AI Article Synopsis

  • There is a significant correlation between gut microbiota and bone diseases, but it's still unclear if there's a direct causal relationship.
  • This study utilized advanced genetic methods to investigate the connections between gut bacteria and skeletal disorders, finding specific bacterial families linked to conditions like knee osteoarthritis and lumbar pelvic fractures.
  • The research suggests that improving gut microbiota could enhance cognitive function and reduce sleep issues, potentially lowering the risk of certain bone diseases, indicating a new preventive approach.

Article Abstract

Increasing evidence highlights a robust correlation between the gut microbiota and bone diseases; however, the existence of a causal relationship between them remains unclear. In this study, we thoroughly examined the correlation between gut microbiota and skeletal diseases using genome-wide association studies. Linkage disequilibrium score regression and Mendelian randomization were used to probe genetic causality. Furthermore, the potential mediating role of neuropsychological states (i.e., cognition, depression, and insomnia) between the gut microbiota and bone diseases was evaluated using mediation analysis, with genetic colocalization analysis revealing potential targets. These findings suggest a direct causal relationship between Ruminococcaceae and knee osteoarthritis (OA), which appears to be mediated by cognitive performance and insomnia. Similarly, a causal association was observed between Burkholderiales and lumbar pelvic fractures, mediated by cognitive performance. Colocalization analysis identified a shared causal variant (rs2352974) at the TRAF-interacting protein locus for cognitive ability and knee OA. This study provides compelling evidence that alterations in the gut microbiota can enhance cognitive ability, ameliorate insomnia, and potentially reduce the risk of site-specific fractures and OA. Therefore, strategies targeting gut microbiota optimization could serve as novel and effective preventive measures against fractures and OA.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534888PMC
http://dx.doi.org/10.3390/nu15183934DOI Listing

Publication Analysis

Top Keywords

gut microbiota
24
bone diseases
12
mendelian randomization
8
correlation gut
8
microbiota bone
8
causal relationship
8
colocalization analysis
8
mediated cognitive
8
cognitive performance
8
cognitive ability
8

Similar Publications

Background: Non-absorbed dietary emulsifiers, including carboxymethylcellulose (CMC), directly disturb intestinal microbiota, thereby promoting chronic intestinal inflammation in mice. A randomised controlled-feeding study (Functional Research on Emulsifiers in Humans, FRESH) found that CMC also detrimentally impacts intestinal microbiota in some, but not all, healthy individuals.

Objectives: This study aimed to establish an approach for predicting an individual's sensitivity to dietary emulsifiers via their baseline microbiota.

View Article and Find Full Text PDF

Prospective analysis of biomarkers associated with successful faecal microbiota transplantation in recurrent Clostridioides difficile Infection.

Clin Microbiol Infect

January 2025

Department of Clinical Microbiology and Infectious Diseases, Hospital General Universitario Gregorio Marañón, Madrid, Spain; Instituto de Investigación Sanitaria Gregorio Marañón, Madrid, Spain; Medicine Department, School of Medicine, Universidad Complutense de Madrid (UCM), Madrid, Spain. Electronic address:

Objectives: Faecal microbiota transplantation (FMT) is an established treatment for recurrent Clostridioides difficile infection (R-CDI). This study aimed to identify calprotectin and microbiome characteristics as potential biomarkers of FMT success.

Methods: We conducted a prospective study of patients who underwent oral FMT (single dose of 4-5 capsules) for R-CDI (January 2018 to December 2022).

View Article and Find Full Text PDF

Integrative multi-omics analysis of autism spectrum disorder reveals unique microbial macromolecules interactions.

J Adv Res

January 2025

Proteomics and Metabolomics Unit, Basic Research Department, Children's Cancer Hospital, 57357 Cairo, (CCHE-57357), Egypt; Department of Physiology, Faculty of Veterinary Medicine, Suez Canal University, 41522 Ismailia, Egypt. Electronic address:

Introduction: Gut microbiota alterations have been implicated in Autism Spectrum Disorder (ASD), yet the mechanisms linking these changes to ASD pathophysiology remain unclear.

Objectives: This study utilized a multi-omics approach to uncover mechanisms linking gut microbiota to ASD by examining microbial diversity, bacterial metaproteins, associated metabolic pathways and host proteome.

Methods: The gut microbiota of 30 children with severe ASD and 30 healthy controls was analyzed.

View Article and Find Full Text PDF

A High Fat, High Sugar Diet Exacerbates Persistent Post-Surgical Pain and Modifies the Brain-Microbiota-Gut Axis in Adolescent Rats.

Neuroimage

January 2025

Department of Neuroscience, Monash University, Melbourne, VIC, Australia; Gastroenterology, Immunology, Neuroscience (GIN) Discovery Program. Electronic address:

Persistent post-surgical pain (PPSP) occurs in a proportion of patients following surgical interventions. Research suggests that specific microbiome components are important for brain development and function, with recent studies demonstrating that chronic pain results in changes to the microbiome. Consumption of a high fat, high sugar (HFHS) diet can drastically alter composition of the microbiome and is a modifiable risk factor for many neuroinflammatory conditions.

View Article and Find Full Text PDF

Role of the gut microbiome in psychological symptoms associated with inflammatory bowel diseases.

Semin Immunopathol

January 2025

Department of Medicine II, Medical Faculty Mannheim, University Medical Center Mannheim, Heidelberg University, Mannheim, Germany.

The brain-gut axis constitutes the basis for the bidirectional communication between the central nervous system and the gastrointestinal tract driven by neural, hormonal, metabolic, immunological, and microbial signals. Alterations in the gut microbiome composition as observed in inflammatory bowel diseases can modulate brain function and emerging empirical evidence has indicated that interactions among the brain-gut microbiome-axis seem to play a significant role in the pathogenesis of both inflammatory bowel diseases and psychiatric disorders and their comorbidity. Yet, the immunological and molecular mechanisms underlying the co-occurrence of inflammatory bowel diseases and psychological symptoms are still poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!