Optical Properties of ScY (Y = N, P As) Nanoparticles.

Nanomaterials (Basel)

Department of Materials Science, University of Patras, GR-26504 Patras, Greece.

Published: September 2023

In this work, using Density Functional Theory (DFT) and Time Dependent DFT, the absorption spectrum, the optical gap, and the binding energy of scandium pnictogen family nanoparticles (NPs) are examined. The calculated structures are created from an initial cubic-like building block of the form ScY, where Y = N, P, As after elongation along one and two perpendicular directions. The existence of stable structures over a wide range of morphologies was one of the main findings of this research, and this led to the study of several exotic NPs. The absorption spectrum of all the studied structures is within the visible spectrum, while the optical gap varies between 1.62 and 3 eV. These NPs could be used in the field in photovoltaics (quantum dot sensitized solar cells) and display applications.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535310PMC
http://dx.doi.org/10.3390/nano13182589DOI Listing

Publication Analysis

Top Keywords

absorption spectrum
8
spectrum optical
8
optical gap
8
optical properties
4
properties scy
4
scy nanoparticles
4
nanoparticles work
4
work density
4
density functional
4
functional theory
4

Similar Publications

Remdesivir and moxifloxacin hydrochloride are among the most frequently co-administered drugs used for COVID-19 treatment. The current work aims to evaluate green spectrophotometric methodologies for estimating remdesivir and moxifloxacin hydrochloride in different matrices for the first time. The proposed approaches were absorbance subtraction, extended ratio subtraction and amplitude modulation methods.

View Article and Find Full Text PDF

Absorption spectra of PS in the ultraviolet and infrared region.

Spectrochim Acta A Mol Biomol Spectrosc

January 2025

Institute of Atomic and Molecular Physics, Jilin University, Changchun 130012 China. Electronic address:

The line list is essential for accurately modeling various astrophysical phenomena, such as stellar photospheres and atmospheres of extrasolar planets. This paper introduces a new line database for the PS molecule spanning from the ultraviolet to the infrared regions, covering wavenumbers up to 45000 cm and containing over ten million transitions between 150,458 states with total angular momentum J < 160. Accurate line intensities for rotational, vibrational and electronic transitions are generated by using the general purpose variational code DUO.

View Article and Find Full Text PDF

CS bonds mediated rapid charge transfer in hm-CN/CdS heterostructure for efficient photocatalytic CO reduction.

J Colloid Interface Sci

January 2025

School of the Environment and Safety Engineering, Institute for Energy Research, Jiangsu University, Zhenjiang 212013, Jiangsu, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, Jiangsu, PR China. Electronic address:

The quest for stable and high-performance photocatalysts is pivotal in advancing the field of photocatalytic CO reduction. Traditional single-component semiconductors are often impeded by their inability to concurrently achieve a broad light absorption spectrum, efficient separation of photogenerated charge carriers, and enduring stability, thereby constraining their photocatalytic efficacy. In this study, we introduce an innovative hm-CN/CdS heterojunction that broadens the light absorption spectrum and significantly enhances the separation efficiency of photogenerated charge carriers.

View Article and Find Full Text PDF

Sulfonated indocyanines 3 and 5 (sCy3, sCy5) are widely used to label biomolecules. Their high molar absorption coefficients and lack of spectral overlap with biopolymers make them ideal as linker components for rapid assessment of bioconjugate stoichiometry. We recently found that the determination of the sCy3:sCy5 molar ratio in a conjugate from its optical absorption spectrum is not straightforward, as the sCy3:sCy5 absorbance ratio at the maxima tends to be larger than expected.

View Article and Find Full Text PDF

Excess consumption of antibiotics leads to antibiotic resistance that hinders the control and cure of microbial diseases. Therefore, it is crucial to monitor the antibiotic levels in the environment. In this proposed research work, an optical nano-sensor was devised that can sense the ultra-low concentration of antibiotics, in samples like tap water using fluorescent zinc oxide quantum dots (ZnO QDs) based nano-sensor.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!