Zinc oxide (ZnO) nanoparticles (NPs) are utilized as a zinc (Zn) fortifier in processed foods where diverse food additives can be present. Among them, additive solvents may strongly interact with ZnO NPs by changing the dispersion stability in food matrices, which may affect physico-chemical and dissolution properties as well as the cytotoxicity of ZnO NPs. In this study, ZnO NP interactions with representative additive solvents (methanol, glycerin, and propylene glycol) were investigated by measuring the hydrodynamic diameters, solubility, and crystallinity of ZnO NPs. The effects of these interactions on cytotoxicity, cellular uptake, and intestinal transport were also evaluated in human intestinal cells and using in vitro human intestinal transport models. The results revealed that the hydrodynamic diameters of ZnO NPs in glycerin or propylene glycol, but not in methanol, were significantly reduced, which is probably related to their high dispersion and increased solubility under these conditions. These interactions also caused high cell proliferation inhibition, membrane damage, reactive oxygen (ROS) generation, cellular uptake, and intestinal transport. However, the crystal structure of ZnO NPs was not affected by the presence of additive solvents. These findings suggest that the interactions between ZnO NPs and additive solvents could increase the dispersion and solubility of ZnO NPs, consequently leading to small hydrodynamic diameters and different biological responses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534380 | PMC |
http://dx.doi.org/10.3390/nano13182573 | DOI Listing |
Sci Rep
January 2025
Instituto de Investigaciones en Biodiversidad y Biotecnología (INBIOTEC-CONICET), Fundación para Investigaciones Biológicas Aplicadas (FIBA), Mar del Plata, 7600, Argentina.
The fungal green synthesis of nanoparticles (NPs) has gained great interest since it is a cost-effective and easy handling method. The process is simple because fungi secrete metabolites and proteins capable of reducing metal salts in aqueous solution, however the mechanism remains largely unknown. The aim of this study was to analyze the secretome of a Trichoderma harzianum strain during the mycobiosynthesis process of zinc and iron nanoparticles.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Microbiology, Faculty of Basic Sciences, Lahijan Branch, Islamic Azad University, Lahijan, Iran.
Breast cancer ranks as the second leading reason of cancer mortality among females globally, emphasizing the critical need for novel anticancer treatments. In current work, berberine-zinc oxide conjugated chitosan nanoparticles were synthesized and characterized using various characterization techniques. The cytotoxic effects of CS-ZnO-Ber NPs on MCF-7 cells were assessed using the MTT assay.
View Article and Find Full Text PDFPlants (Basel)
January 2025
College of Horticulture, Gansu Agricultural University, Lanzhou 730070, China.
Soil salinization severely restricts the growth and development of crops globally, especially in the northwest Loess Plateau, where apples constitute a pillar industry. Nanomaterials, leveraging their unique properties, can facilitate the transport of nutrients to crops, thereby enhancing plant growth and development under stress conditions. To investigate the effects of nano zinc oxide (ZnO NP) on the growth and physiological characteristics of apple self-rooted rootstock M9-T337 seedlings under saline alkali stress, one-year-old M9-T337 seedlings were used as experimental materials and ZnO NPs were used as donors for pot experiment.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Mechanical Engineering and Agrophysics, Faculty of Production and Power Engineering, University of Agriculture in Krakow, Balicka Street 116 B, 30-149 Krakow, Poland.
One of the methods for obtaining zinc oxide nanoparticles (ZnO NPs) is electrochemical synthesis. In this study, the anodic dissolution process of metallic zinc in alcohol solutions of LiCl was used to synthesize ZnO NPs. The products were obtained as colloidal suspensions in an electrolyte solution.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Department of Mathematical, Physical and Computer Sciences, University of Parma, 43124 Parma, Italy.
This study presents an efficient and environmentally sustainable synthesis of ZnO nanoparticles using a starch-mediated sol-gel approach. This method yields crystalline mesoporous ZnO NPs with a hexagonal wurtzite structure. The synthesized nanoparticles demonstrated remarkable multifunctionality across three critical applications.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!