Surface-enhanced Raman scattering (SERS) is a powerful technique for decoding of 2-5-component mixes of analytes. Low concentrations of analytes and complex biological media are usually non-decodable with SERS. Recognition molecules, such as antibodies and aptamers, provide an opportunity for a specific binding of ultra-low contents of analyte dissolved in complex biological media. Different approaches have been proposed to provide changes in SERS intensity of an external label upon binding of ultra-low contents of the analytes. In this paper, we propose a SERS-based sensor for the rapid and sensitive detection of botulinum toxin type A. The silver nanoisland SERS substrate was functionalized using an aptamer conjugated with a Raman label. The binding of the target affects the orientation of the label, providing changes in an analytical signal. This trick allowed detecting botulinum toxin type A in a one-stage manner without additional staining with a monotonous dose dependence and a limit of detection of 2.4 ng/mL. The proposed sensor architecture is consistent with the multiarray detection systems for multiplex analyses.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535226 | PMC |
http://dx.doi.org/10.3390/nano13182531 | DOI Listing |
Zh Nevrol Psikhiatr Im S S Korsakova
December 2024
OOO NBC «Pharmbiomed», Moscow, Russia.
Objective: To evaluate the toxic effects of the agent Relatox on mature outbred rats and mice in an acute experiment in comparison with the registered analogue Dysport.
Material And Methods: Based on the aim of experiment, the acute toxic effects of Relatox and Dysport were assessed on two animal species: rats and mice at intraperitoneal and intramuscular administration at dose levels that made it possible to calculate the toxicological parameter values (initially 10-150 U/kg with subsequent usage of additional doses 20 U/kg to 300 U/kg depending on the agent and route of administration). The LD values and other acute toxic parameters were calculated using probit analysis.
Toxins (Basel)
December 2024
Department of Neurology, Tokushima University, Tokushima 770-8503, Japan.
Oromandibular dystonia (OMD) is a focal dystonia characterized by contractions of the masticatory, lingual, and other muscles of the stomatognathic system. We conducted a systematic review and meta-analysis to elucidate the impact and safety of botulinum toxin in OMD. The eligibility criteria were full-length original articles that provided data evaluating the efficacy and adverse effects of onabotulinumtoxinA injections in patients with OMD.
View Article and Find Full Text PDFAdv Sci (Weinh)
December 2024
Medical School, Henan University, Kaifeng, Henan Province, 475004, P. R. China.
Accurately assessing potential side effects following botulinum neurotoxin (BoNT) injection remains a formidable challenge. To address this issue, an innovative approach is developed that combines a wearable temperature sensor with a sophisticated volatilomics technique, aimed at facilitating the rapid and convenient prediction of potential physical discomfort related to latrogenic botulism. The investigation identifies five volatile organic compounds (VOCs)-acetone, styrene, ethanol, 2-pentanone, and n-butano-as promising markers indicative of BoNT poisoning.
View Article and Find Full Text PDFAnn Rehabil Med
December 2024
Department of Rehabilitation Medicine, National Rehabilitation Center, Ministry of Health and Welfare, Seoul, Korea.
Objective: Tremors are caused by contractions of reciprocally innervated muscles. The role of ultrasound in diagnosing tremors has not yet been investigated, although it appears to be promising because it can visualize muscle movements. In the present study, we report four cases of tremor (Holmes' tremor, extremity tremor associated with palatal myoclonus, dystonic tremor, and tremor associated with dystonia), which were evaluated using ultrasound and treated with botulinum toxin injections.
View Article and Find Full Text PDFBiosens Bioelectron
December 2024
Institute of Agricultural Engineering, ARO, Volcani Institute, Rishon LeZion, 7505101, Israel. Electronic address:
Botulinum neurotoxins (BoNT), the agent causing botulism, exhibit the highest potency among bacterial toxins and pose a significant threat to both humans and animals. The current in vivo method (mouse lethality assay, MLA) is inappropriate for real-time and pen-side assessment of the occurring outbreak or case. Herein, we describe a reflective-based biosensor capable of detecting the toxin's type and activity state by competitive immunoassay and endopeptidase activity, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!