In this research, the aim was to introduce innovation to the pharmaceutical field through the exploration of an underutilized plant matrix, the red araçá, along with the utilization of sodium alginate for the development of membranes designed for active topical dressings. Within this context, optimal extraction conditions were investigated using the central composite rotational statistical design (CCRD) to obtain a red araçá epicarp extract (RAEE) rich in bioactive compounds utilizing the maceration technique. The extract acquired under the optimized conditions (temperature of 66 °C and a hydroalcoholic solvent concentration of 32%) was incorporated into a sodium alginate matrix for the production of active membranes using a casting method. Characterization of the membranes revealed that the addition of the extract did not significantly alter its morphology. Furthermore, satisfactory results were observed regarding mechanical and barrier properties, as well as the controlled release of phenolic compounds in an environment simulating wound exudate. Based on these findings, the material produced from renewable matrices demonstrates the promising potential for application as a topical dressing within the pharmaceutical industry.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537386 | PMC |
http://dx.doi.org/10.3390/molecules28186688 | DOI Listing |
Scand J Med Sci Sports
January 2025
Department of Physical Education and Sports, Faculty of Sport Sciences, University of Granada, Melilla, Spain.
We aimed to determine the persisting effects of various exercise modalities and intensities on functional capacity after periods of training cessation in older adults. A comprehensive search was conducted across the Cochrane Library, PubMed/MEDLINE, Scopus, and Web of Science Core Collection up to March 2024 for randomized controlled trials examining residual effects of physical exercise on functional capacity in older adults ≥ 60 years. The analysis encompassed 15 studies and 21 intervention arms, involving 787 participants.
View Article and Find Full Text PDFNeuroradiol J
January 2025
Division of Diagnostic Radiology, Department of Radiology, Faculty of Medicine, Chulalongkorn University, King Chulalongkorn Memorial Hospital, The Thai Red Cross Society, Bangkok, Thailand.
Objective: Predicting treatment response in patients with vestibular schwannomas (VSs) remains challenging. This study aimed to evaluate the use of pre-treatment normalized apparent diffusion coefficient (nADC) values and magnetic resonance (MR) imaging characteristics in predicting treatment outcomes in patients with VSs undergoing radiosurgery.
Methods: The MR images of 44 patients with VSs who underwent radiosurgery at our institution were retrospectively reviewed, and the patients were categorized into tumor control ( = 28) and progression ( = 16) groups based on treatment response after treatment initiation, with a median follow-up duration of 29.
ACS Nano
January 2025
State Key Laboratory of Fine Chemicals, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518055, China.
Biofilm-induced chronic bacterial infections represent a significant challenge in modern medicine due to their resistance to conventional antibiotic treatments. Although photodynamic therapy (PDT) has emerged as a promising antibiotic-free antibacterial strategy, the hypoxic condition within biofilms and the lack of an effective local drug delivery system have limited the clinical effectiveness of photosensitizer (PS) agents. Herein, we propose a type of charge regulation-enhanced type I PS-loaded hydrogel dressing for treating biofilm infection.
View Article and Find Full Text PDFJ Biomed Mater Res A
January 2025
Faculty of Materials Science and Engineering, Warsaw University of Technology, Warsaw, Poland.
Bone tissue regeneration can be affected by various architectonical features of 3D porous scaffold, for example, pore size and shape, strut size, curvature, or porosity. However, the design of additively manufactured structures studied so far was based on uniform geometrical figures and unit cell structures, which often do not resemble the natural architecture of cancellous bone. Therefore, the aim of this study was to investigate the effect of architectonical features of additively manufactured (aka 3D printed) titanium scaffolds designed based on microtomographic scans of fragments of human femurs of individuals of different ages on in vitro response of human bone-derived mesenchymal stem cells (hMSC).
View Article and Find Full Text PDFJ Sci Food Agric
January 2025
Department of Food Technology, Fulda University of Applied Sciences, Fulda, Germany.
Background: Understanding the size and surface charge (ζ-potential) of particles in the mixed micellar fraction produced by in vitro digestion is crucial to understand their cellular absorption and transport. The inconsistent presentation of micellar size data, often limited to average particle diameter, makes comparison of studies difficult. The present study aimed to assess different size data representations (mean particle diameter, relative intensity- or volume-weighted size distribution) to better understand physiological mixed micelle characteristics and to provide recommendations for size reporting and sample handling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!