Einstein Model of a Graph to Characterize Protein Folded/Unfolded States.

Molecules

Laboratoire Interdisciplinaire Carnot de Bourgogne, UMR CNRS 6303, Université de Bourgogne, 21078 Dijon CEDEX, France.

Published: September 2023

The folded structures of proteins can be accurately predicted by deep learning algorithms from their amino-acid sequences. By contrast, in spite of decades of research studies, the prediction of folding pathways and the unfolded and misfolded states of proteins, which are intimately related to diseases, remains challenging. A two-state (folded/unfolded) description of protein folding dynamics hides the complexity of the unfolded and misfolded microstates. Here, we focus on the development of simplified order parameters to decipher the complexity of disordered protein structures. First, we show that any connected, undirected, and simple graph can be associated with a linear chain of atoms in thermal equilibrium. This analogy provides an interpretation of the usual topological descriptors of a graph, namely the Kirchhoff index and Randić resistance, in terms of effective force constants of a linear chain. We derive an exact relation between the Kirchhoff index and the average shortest path length for a linear graph and define the free energies of a graph using an Einstein model. Second, we represent the three-dimensional protein structures by connected, undirected, and simple graphs. As a proof of concept, we compute the topological descriptors and the graph free energies for an all-atom molecular dynamics trajectory of folding/unfolding events of the proteins Trp-cage and HP-36 and for the ensemble of experimental NMR models of Trp-cage. The present work shows that the local, nonlocal, and global force constants and free energies of a graph are promising tools to quantify unfolded/disordered protein states and folding/unfolding dynamics. In particular, they allow the detection of transient misfolded rigid states.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536427PMC
http://dx.doi.org/10.3390/molecules28186659DOI Listing

Publication Analysis

Top Keywords

free energies
12
einstein model
8
unfolded misfolded
8
protein structures
8
structures connected
8
connected undirected
8
undirected simple
8
linear chain
8
topological descriptors
8
descriptors graph
8

Similar Publications

The present study focuses on designing mutant peptides derived from the lanthanide binding tag (LBT) to enhance selectivity for trivalent actinide (An) ions over lanthanide (Ln) metal ions (M). The LBT is a short peptide consisting of only 17 amino acids, and is known for its high affinity towards Ln. LBT was modified by substituting hard-donor ligands like asparagine (ASN or N) and aspartic acid (ASP or D) with softer ligand cysteine (CYS or C) to create four mutant peptides: M-LBT (wild-type), M-N103C, M-D105C, and M-N103C-D105C.

View Article and Find Full Text PDF

In this work, we use experimental and theoretical techniques to study the origin of the boosted hydrogen evolution reaction (HER) catalytic activity of two pyridyl-pyrrolidine functionalized C fullerenes. Notably, the mono-(pyridyl-pyrrolidine) penta-adduct of C has exhibited a remarkable HER catalytic activity as a metal-free catalyst, delivering an overpotential () of 75 mV RHE and a very low onset potential of -45 mV RHE. This work addresses fundamental questions about how functionalization on C changes the electron density on fullerene cages for high-performance HER electrocatalysis.

View Article and Find Full Text PDF

The crystal and electronic structure of ZrxTi1-xSe2 (0 < x < 1) compounds and their electrical resistivity have been studied in detail for the first time. A combination of soft x-ray spectroscopic methods (XPS, XAS, and ResPES) was used to investigate the electronic structure. The lattice parameters as a function of the metal concentration x obey Vegard's law.

View Article and Find Full Text PDF

Computer-aided drug discovery (CADD) utilizes computational methods to accelerate the identification and optimization of potential drug candidates. Free energy perturbation (FEP) and thermodynamic integration (TI) play a critical role in predicting differences in protein binding affinities between drug molecules. Here, we implement SPONGE-FEP, which incorporates selective integrated tempering sampling (SITS) to enhance sampling efficiency and contains an automated workflow for relative binding free energy (RBFE) calculations.

View Article and Find Full Text PDF

Dinitramide salts based on nitropyrazole-diaminotriazole hybrid: novel ionic energetic materials with high-energy and low-sensitivity.

Phys Chem Chem Phys

January 2025

Experimental Center of Advanced Materials, School of Materials Science & Engineering, Beijing Institute of Technology, Beijing 100081, China.

In this study, employing a simple anion exchange strategy and straightforward three-step synthetic route, a pair of promising nitrogen-rich heterocyclic cation and oxygen-rich anion were assembled together to generate two novel dinitramide energetic salts, both of which exhibit prominent detonation performance comparable to benchmark explosive RDX while possessing significantly lower mechanical sensitivity than RDX, thereby highlighting them as promising candidates for advanced secondary explosives. This work has directly led to a practical protocol for the design of chloride-free environmentally friendly IEMs, and accelerates the development of organic explosives with high-energy and low-sensitivity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!