The direct selective conversion of ethanol to butadiene (ETB) is a competitive and environmentally friendly process compared to the traditional crude cracking route. The acid-base properties of catalysts are crucial for the direct ETB process. Herein, we report a rationally designed multifunctional lignin-derived carbon-modulated ZnZr/SiO (L-ZnZr/SiO) catalyst with suitable acid-base properties for the direct ETB reaction. A variety of characterization techniques are employed to investigate the relationship between the acid-base properties and catalytic performance of the multifunctional lignin-modulated ZnZr/SiO catalysts. The results revealed that the rationally additional lignin-modulated carbon enhances both the acidity and basicity of the ZnZr/SiO catalysts, providing a suitable acid-base ratio that boosts the direct ETB reactivity. Meanwhile, the 1% L-ZnZr/SiO catalyst possessed ethanol conversion and butadiene selectivity as high as 98.4% and 55.5%, respectively, and exhibited excellent catalytic stability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10536710 | PMC |
http://dx.doi.org/10.3390/molecules28186632 | DOI Listing |
Int J Surg Case Rep
December 2024
Faculty of Health, Universidad Santiago de Cali, Cali, Colombia. Electronic address:
Introduction: Metabolic acidosis, marked by decreased plasma bicarbonate and arterial pH, is a common complication following extensive abdominal surgeries. D-lactate acidosis presents additional diagnostic challenges due to nonspecific symptoms.
Presentation Of Case: A 65-year-old woman with hypertension and morbid obesity was admitted to the ICU for intestinal obstruction and peritonitis due to an incarcerated hernia.
Adv Colloid Interface Sci
December 2024
Jerzy Haber Institute of Catalysis and Surface Chemistry, Polish Academy of Sciences, Niezapominajek 8, PL-30239 Krakow, Poland. Electronic address:
Chitosan, a biocompatible polysaccharide, finds a wide range of applications, inter alia as an antimicrobial agent, stabilizer of food products, cosmetics, and in the targeted delivery of drugs and stem cells. This work represents a comprehensive review of the properties of chitosan molecule and its aqueous solutions uniquely combining theoretical modeling and experimental results. The emphasis is on physicochemical aspects which were sparsely considered in previous reviews.
View Article and Find Full Text PDFNanomaterials (Basel)
December 2024
Center On Nanoenergy Research, Guangxi Key Laboratory for Relativistic Astrophysics, School of Physical Science and Technology, Guangxi University, Nanning 530004, China.
Wearable devices have potential applications in health monitoring and personalized healthcare due to their portability, conformability, and excellent mechanical flexibility. However, their performance is often limited by instability in acidic or basic environments. In this study, a flexible sensor with excellent stability based on a GaN nanoplate was developed through a simple and controllable fabrication process, where the linearity and stability remained at almost 99% of the original performance for 40 days in an air atmosphere.
View Article and Find Full Text PDFChem Sci
December 2024
National Key Laboratory of Green Pesticide, International Joint Research Center for Intelligent Biosensor Technology and Health, College of Chemistry, Central China Normal University Wuhan 430079 P. R. China
Developing dithienylethene (DTE)-based fluorescence switches triggered by biocompatible visible light has always been a long-term goal in view of their potential in numerous biological scenarios. However, their practical availability is severely limited by the short visible light (generally less than 500 nm) required for photocyclization, their inability to achieve red or near-infrared emission, and their short fluorescence lifetimes. Herein, we present a novel DTE derivative featuring a dimethylamine-functionalized BF-curcuminoid moiety (NBDC) by using an "acceptor synergistic conjugation system" strategy.
View Article and Find Full Text PDFSmall
December 2024
Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, 201002, India.
A mixed-ligand-based thermo-chemically robust and undulated metal-organic framework (MOF) is developed that embraces carboxamide moiety-grafted porous channels and activation-induced generation of open-metal site (OMS). The guest-free MOF acts as an outstanding heterogeneous catalyst in Hantzsch condensation for electronically assorted substrates with low catalyst loading and short duration under greener conditions than the reported materials. Besides Lewis acidic OMS, the carboxamide group activates the substrate via two-point hydrogen bonding, highlighting the effectiveness of custom-made functionalities in this multi-component reaction.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!