In this study, determination of the inorganic and organic forms of tin in waters of different salinities is considered. The possibility of the separation of speciations of tin using liquid-liquid extraction (LLE); precipitation with fluorides, iodides, ammonia, and iron (III) chloride; and sorption of organotin compounds (OTCs) was studied. The LLE and analyte precipitation methods proved to be ineffective. Inorganic and organic forms of tin were separated by the sorption of OTCs using silica gel sorbent Diapak C18. Under optimized conditions, a technique for the separate determination of the forms of tin in natural waters was developed. The technique combines hydride generation and microwave mineralization of solutions followed by ICP spectrometry. The inorganic forms of tin were determined after their solid-phase separation from organotin compounds. The lower limits of analyte quantification were 0.03 μg/L (ICP-MS) and 0.05 μg/L (ICP-OES), which provide separate determinations of inorganic and organic forms of tin in waters with different salinities. The content of OTCs in water was determined by subtracting the inorganic concentration from the total concentration of tin. The technique will allow a comprehensive assessment of the toxicological impact of tin speciations on the aquatic ecosystem.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538066PMC
http://dx.doi.org/10.3390/molecules28186615DOI Listing

Publication Analysis

Top Keywords

inorganic organic
20
forms tin
20
organic forms
12
tin
10
organic speciations
8
separate determination
8
determination inorganic
8
speciations tin
8
tin waters
8
waters salinities
8

Similar Publications

Abiotic H and hydrocarbons are found in fluids discharged from ultramafic-hosted hydrothermal vents. Beneath the hydrothermal vents, abiotic H and hydrocarbons can be formed by serpentinization reactions and Fischer-Tropsch-type hydrocarbon-forming reactions, respectively, over ultramafic rocks. However, the source rocks that form abiotic H and hydrocarbons may extend to broader subsurface rocks.

View Article and Find Full Text PDF

Nano-TiO as an antimicrobial inorganic material, can stimulate cells to produce reactive oxygen species and exhibit effective biochemical properties; however, phenylpyrazole derivatives, as organic pesticides, are widely used in agriculture and food. To find novel pesticides with environmental friendliness, combined with three-dimensional quantitative structure-activity relationship (3D-QSAR) prediction analysis, three types of alkaloidal phenylpyrazole amine derivatives (PA) were synthesized by a one-pot microwave method. Based on the dye sensitization strategy, four nano-organometallic pesticides (PT) were prepared by organic-inorganic hybridization.

View Article and Find Full Text PDF

Algal decomposition plays an important role in affecting phosphorus (P) release from sediments in eutrophic lakes under global warming. Yet how rising air temperature affect endogenous P release from sediments during the algal decomposition is poorly understood. In this study, effect of increasing air temperature on endogenous P release was investigated.

View Article and Find Full Text PDF

Multidrug resistant bacteria are causing health problems and economic burden worldwide; alternative treatment options such as natural products and nanoparticles have attained great attention recently. Therefore, we aimed to determine the phytochemicals, antibacterial potential, and anticancer activity of W. unigemmata.

View Article and Find Full Text PDF

Membranes have extensive applications in catalysis, separation, antimicrobial activities, and sensing. However, developing a simple and environmentally friendly method for preparing membranes remains challenging. Here, we report a novel strategy for fabricating self-standing inorganic-organic composite films at the miscible liquid/liquid interface using a soft spray technique.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!