The quality of (Turcz.) Baill. () is principally attributed to lignan compounds. In this paper, a simple and rapid strategy for simultaneous extraction and determination of 10 lignans from was established through matrix solid-phase dispersion (MSPD) assisted by diol-functionalized silica (Diol). The experimental parameters for MSPD extraction were screened using the response surface methodology (RSM). Diol (800 mg) was used as a dispersant and methanol (MeOH, 85%, /) as an eluting solvent (10 mL), resulting in a high extraction efficiency. MSPD extraction facilitated the combination of extraction and purification in a single step, which was less time-consuming than and avoided the thermal treatment involved in traditional methods. The simultaneous qualification and quantification of 10 lignans was achieved by combining MSPD and high-performance liquid chromatography (HPLC). The proposed method offered good linearity and a low limit of detection starting from 0.04 (schisandrin C) to 0.43 μg/mL (schisantherin B) for lignans, and the relative standard deviation (RSD, %) values of precision were acceptable, with a maximum value of 1.15% (schisantherin B and schisanhenol). The methodology was successfully utilized to analyze 13 batches of from different cultivated areas of China, which proved its accuracy and practicability in the quantitative analysis of the quality control of .
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535609 | PMC |
http://dx.doi.org/10.3390/molecules28186448 | DOI Listing |
Sci Adv
January 2025
Disease Area Oncology, Novartis Institutes for Biomedical Research, CH-4002 Basel, Switzerland.
Cell lines and patient-derived xenografts are essential to cancer research; however, the results derived from such models often lack clinical translatability, as they do not fully recapitulate the complex cancer biology. Identifying preclinical models that sufficiently resemble the biological characteristics of clinical tumors across different cancers is critically important. Here, we developed MOBER, Multi-Origin Batch Effect Remover method, to simultaneously extract biologically meaningful embeddings while removing confounder information.
View Article and Find Full Text PDFWorld J Surg
January 2025
Department of Surgery, Stanford University School of Medicine, Stanford, California, USA.
Background: Risk models to predict perioperative mortality rates (POMR) are critical to surgical quality improvement yet are not widely adapted for use in humanitarian and low-resource settings (LRS). We developed a POMR and corresponding nomogram and calculator for use in humanitarian surgical care.
Methods: Electronic health record data from a high-income academic medical center from 2015 to 2019 were retrospectively extracted, selecting variables and operations specific to LRS.
J Fluoresc
January 2025
Analytical Chemistry Department, Faculty of Pharmacy, Cairo University, Kasr Al-Aini Street, Cairo, 11562, Egypt.
Highly sensitive spectrofluorimetric methods were developed for the quantitative estimation of formoterol fumarate dihydrate (FFD) and fluticasone propionate (FP) in both authentic raw materials and marketed dosage forms using a micellar-enhanced spectrofluorimetric approach. The proposed methods are based on the determination of FP in the presence of FFD using the first derivative emission spectrofluorimetry. The peak amplitude of the emission spectra of the formed micellar fluorescence was measured at 465 nm after excitation at 236 nm (λ max of FP).
View Article and Find Full Text PDFJ Chromatogr Sci
January 2025
Nutrition and Bromatology Group, Department of Analytical Chemistry and Food Science, Faculty of Science, Universidade de Vigo, E-32004 Ourense, Spain.
An efficient reverse-phase high-performance liquid chromatographic method, based on the design of the experiment approach, was developed for the simultaneous determination of capsiate isomers. Critical method parameters, i.e.
View Article and Find Full Text PDFAnalyst
January 2025
College of Veterinary Medicine, Institute of Comparative Medicine, Yangzhou University, Yangzhou 225009, China.
The M13 phage carries approximately 5 copies of the pIII protein, each of which is capable of displaying a single-chain variable fragment (scFv) that targets a specific antigen. This feature enables the M13 phage to be widely employed in the construction of scFv libraries, thereby facilitating the identification of antibodies with high specificity and affinity for target antigens. In this study, mice were immunized three times with (strain C50041) to induce diverse antibodies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!