For decades, researchers have focused on containing terrestrial oil pollution. The heterogeneity of soils, with immense microbial diversity, inspires them to transform pollutants and find cost-effective bioremediation methods. In this study, the mycoremediation potentials of five filamentous fungi isolated from polluted soils in Kazakhstan were investigated for their degradability of -alkanes and branched-chain alkanes as sole carbon and energy sources. Dry weight estimation and gas chromatography-mass spectrometry (GC-MS) monitored the growth and the changes in the metabolic profile during degradation, respectively. SBUG-M1741 and SBUG-M1742 oxidized medium-chain alkanes almost completely through mono- and di-terminal degradation. Pristane degradation by SBUG-M1741 was >95%, while its degradation with SBUG-M1751 was >90%. SBUG-M1751 also exhibited the visible degradation potential of tetradecane and phytane, whereby in the transformation of phytane, both the mono- and di-terminal degradation pathways as well as α- and ß-oxidation steps could be described. SBUG-M1749 used both mono- and di-terminal degradation pathways for -alkanes, but with poor growth. Degradation of pristane by SBUG-M1747 followed the di-terminal oxidation mechanism, resulting in one dicarboxylic acid. These findings highlight the role of filamentous fungi in containing oil pollution and suggest possible degradation pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10534712 | PMC |
http://dx.doi.org/10.3390/microorganisms11092195 | DOI Listing |
World J Microbiol Biotechnol
January 2025
Department of Environmental Engineering, Kyungpook National University, 80 Daehak-Ro, Buk-Gu, Daegu, 41566, South Korea.
Endophytes have significant prospects for applications beyond their existing utilization in agriculture and the natural sciences. They form an endosymbiotic relationship with plants by colonizing the root tissues without detrimental effects. These endophytes comprise several microorganisms, including bacteria and fungi.
View Article and Find Full Text PDFEcology
January 2025
Department of Biology, University of Louisville, Louisville, Kentucky, USA.
Lightning strikes are a common source of disturbance in tropical forests, and a typical strike generates large quantities of dead wood. Lightning-damaged trees are a consistent resource for tropical saproxylic (i.e.
View Article and Find Full Text PDFMicrob Ecol
January 2025
IRD, UMR ENTROPIE, 15 Avenue René Cassin, CS 92003, 97744, Saint Denis Cedex 9, La Réunion, France.
The marine microbiome arouses an increasing interest, aimed at better understanding coral reef biodiversity, coral resilience, and identifying bioindicators of ecosystem health. The present study is a microbiome mining of three environmentally contrasted sites along the Hermitage fringing reef of La Réunion Island (Western Indian Ocean). This mining aims to identify bioindicators of reef health to assist managers in preserving the fringing reefs of La Réunion.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biological Sciences, Birla Institute of Technology and Sciences, Pilani, 333031, Rajasthan, India.
In present study, 15 morphologically different fungi isolated from rhizopheric soils of an industrial area were screened for their Zn removal efficiency from aqueous solution. Isolate depicting highest potential was molecularly identified as Aspergillus terreus SJP02. Effect of various process parameters viz.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Dermatology, Faculty of Medicine Siriraj Hospital, Mahidol University, 2 Prannok Road, Bangkok Noi, Bangkok, 10700, Thailand.
Tinea manuum is a superficial fungal infection affecting the hands, particularly the palms and interdigital areas. This retrospective study investigated clinical features, laboratory findings, treatment, and outcomes in patients with fungal hand infections at Siriraj Hospital between 2016 and 2020. Among 107 patients, representing 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!