The demand for novel antimicrobial compounds is rapidly growing due to the rising appearance of antibiotic resistance in bacteria; accordingly, alternative approaches are urgently needed. Antimicrobial peptides (AMPs) are promising, since they are a naturally occurring part of the innate immune system and display remarkable broad-spectrum activity and high selectivity against various microbes. Marine invertebrates are a primary resource of natural AMPs. Consequently, cDNA expression (EST) libraries from the Cnidarian moon jellyfish and the Ctenophore comb jelly were constructed in . Cell-free size-fractionated cell extracts (<3 kDa) of the two libraries (each with 29,952 clones) were consecutively screened for peptides preventing the biofilm formation of opportunistic pathogens using the crystal violet assay. The 3 kDa fraction of ten individual clones demonstrated promising biofilm-preventing activities against and . Sequencing the respective activity-conferring inserts allowed for the identification of small ORFs encoding peptides (10-22 aa), which were subsequently chemically synthesized to validate their inhibitory potential. Although the peptides are likely artificial products from a random translation of EST inserts, the biofilm-preventing effects against , , , and were verified for five synthetic peptides in a concentration-dependent manner, with peptide BiP_Aa_5 showing the strongest effects. The impact of BiP_Aa_2, BiP_Aa_5, and BiP_Aa_6 on the dynamic biofilm formation of was further validated in microfluidic flow cells, demonstrating a significant reduction in biofilm thickness and volume by BiP_Aa_2 and BiP_Aa_5. Overall, the structural characteristics of the marine invertebrate-derived AMPs, their physicochemical properties, and their promising antibiofilm effects highlight them as attractive candidates for discovering new antimicrobials.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537229PMC
http://dx.doi.org/10.3390/microorganisms11092184DOI Listing

Publication Analysis

Top Keywords

antimicrobial peptides
8
peptides originating
4
originating expression
4
expression libraries
4
libraries prevent
4
prevent biofilm
4
biofilm formation
4
formation opportunistic
4
opportunistic pathogens
4
pathogens demand
4

Similar Publications

Antimicrobial peptides (AMPs) are promising agents for treating antibiotic-resistant bacterial infections. Although discovering novel AMPs is crucial for combating multidrug-resistant bacteria and biofilm-related infections, their clinical potential relies on precise, real-time evaluation of efficacy, toxicity, and mechanisms. Optical diffraction tomography (ODT), a label-free imaging technology, enables real-time visualization of bacterial morphological changes, membrane damage, and biofilm formation over time.

View Article and Find Full Text PDF

deep-AMPpred: A Deep Learning Method for Identifying Antimicrobial Peptides and Their Functional Activities.

J Chem Inf Model

January 2025

School of Information and Artificial Intelligence, Anhui Provincial Engineering Research Center for Beidou Precision Agriculture Information, Key Laboratory of Agricultural Sensors for Ministry of Agriculture and Rural Affairs, Anhui Agricultural University, Hefei, Anhui 230036, China.

Antimicrobial peptides (AMPs) are small peptides that play an important role in disease defense. As the problem of pathogen resistance caused by the misuse of antibiotics intensifies, the identification of AMPs as alternatives to antibiotics has become a hot topic. Accurately identifying AMPs using computational methods has been a key issue in the field of bioinformatics in recent years.

View Article and Find Full Text PDF

A series of tripodal (three-arm) lysine-based peptides were designed and synthesized and their self-assembly properties in aqueous solution and antimicrobial activity were investigated. We compare the behaviors of homochiral tripodal peptides (KKY)K and a homologue containing the bulky aromatic fluorenylmethoxycarbonyl (Fmoc) group Fmoc-(KKY)K, and heterochiral analogues containing k (d-Lys), (kkY)K and Fmoc-(kkY)K. The molecular conformation and self-assembly in aqueous solutions were probed using various spectroscopic techniques, along with small-angle X-ray scattering (SAXS) and cryogenic-transmission electron microscopy (cryo-TEM).

View Article and Find Full Text PDF

Like other vertebrates, amphibians possess innate and adaptive immune systems. At the center of the adaptive immune system is the Major Histocompatibility Complex. The important molecules of innate immunity are antimicrobial peptides (AMPs).

View Article and Find Full Text PDF

Improving the antimicrobial potential of the peptide CIDEM-501 through acylation: A computational approach.

Biochim Biophys Acta Biomembr

January 2025

Biochemistry and Molecular Biology Department, Center for Pharmaceutical Research and Development, Ave. 26 # 1605, Nuevo Vedado, Ciudad de La Habana, 10400, Cuba. Electronic address:

Acylation is a common method used to modify antimicrobial peptides to enhance their effectiveness. It increases the interactions between the peptide and the bacterial cell membranes. However, acylation can also reduce the selectivity of the peptides by making them more active on eukaryotic membranes, which can lead to unintended toxicity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!