The autonomous manipulation of objects by robotic grippers has made significant strides in enhancing both human daily life and various industries. Within a brief span, a multitude of research endeavours and gripper designs have emerged, drawing inspiration primarily from biological mechanisms. It is within this context that our study takes centre stage, with the aim of conducting a meticulous review of bioinspired grippers. This exploration involved a nuanced classification framework encompassing a range of parameters, including operating principles, material compositions, actuation methods, design intricacies, fabrication techniques, and the multifaceted applications into which these grippers seamlessly integrate. Our comprehensive investigation unveiled gripper designs that brim with a depth of intricacy, rendering them indispensable across a spectrum of real-world scenarios. These bioinspired grippers with a predominant emphasis on animal-inspired solutions have become pivotal tools that not only mirror nature's genius but also significantly enrich various domains through their versatility.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535325 | PMC |
http://dx.doi.org/10.3390/mi14091772 | DOI Listing |
Adv Mater
January 2025
School of Materials Science and Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore, 639798, Singapore.
This study introduces advancements in electrohydrodynamic (EHD) pumps and the development of a 3D-printable anti-swelling organohydrogel for soft robotics. Using digital light processing (DLP)technology, precise components with less than 1% size variation are fabricated, enabling a unique manifold pump array. This design achieves an output pressure of 90.
View Article and Find Full Text PDFSci Rep
December 2024
Division of Mechatronic Devices, Institute of Mechanical Technology, Poznan University of Technology, 60-965, Poznan, Poland.
Grippers are commonly used as a technological tooling for manipulators. They enable robots to interact with objects in their work area. Grippers have a wide range of differentiation focused on the operation performed and the properties (e.
View Article and Find Full Text PDFSci Adv
December 2024
Autonomous Matter Department, AMOLF, Amsterdam 1098 XG, Netherlands.
Decision-making based on environmental cues is a crucial feature of autonomous systems. Embodying this feature in soft robots poses nontrivial challenges on both hardware and software that can undermine the simplicity and autonomy of such devices. Existing pneumatic electronics-free soft robots have so far mostly been approached by using system fluidic circuit architectures analogous to digital electronics.
View Article and Find Full Text PDFCurr Pharm Des
December 2024
Institute of Pharmaceutical Research, GLA University, Mathura-Delhi Road, Mathura-281406, Uttar Pradesh, India.
Research on shape memory materials (SMM) or smart materials, along with advancements in printing technology, has transformed three-dimensional (3D) printing into what we now refer to as 4D printing. In this context, the addition of time as a fourth dimension enhances 3D printing. 4D printing involves the creation of 3D-printed objects that can change their shapes into complex geometries when influenced by external stimuli such as temperature, light, or pH over time.
View Article and Find Full Text PDFSoft Robot
December 2024
Department of Robotics and Mechatronics Engineering, Daegu Gyeongbuk Institute of Science and Technology (DGIST), Daegu, Republic of Korea.
High-performance eco-friendly soft actuators showing large displacement, fast response, and long-term operational capability require further development for next-generation bioinspired soft robots. Herein, we report an electro-ionic soft actuator based on carboxylated cellulose nanocrystals (CCNC) and carboxylated cellulose nanofibers (CCNF), graphene nanoplatelets (GN), and ionic liquid (IL). The actuator exhibited exceptional actuation performances, achieving large displacements ranging from 1.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!