BiCuSeO has great application prospects in thermoelectric power generation and thermoelectric catalysis, but it is limited by its lower thermoelectric performance. Herein, BiCuSeO bulk materials were prepared using a solid-phase reaction method and a ball-milling method combined with spark plasma sintering, and then the thermoelectric properties were improved by synergistically increasing carrier concentration and mobility. Al was adopted to dope into the BiCuSeO matrix, aiming to adjust the carrier mobility through energy band adjustment. The results show that Al doping would widen the bandgap and enhance the carrier mobility of BiCuSeO. After Al doping, the thermoelectric properties of the material are improved in the middle- and high-temperature range. Based on Al doping, Pb is adopted as the doping element to dope BiCuSeO to modify the carrier concentration. The results show that Al/Pb dual doping in the BiCuSeO matrix can increase the carrier concentration under the premise of increasing carrier mobility. Therefore, the electrical conductivity of BiCuSeO can be improved while maintaining a large Seebeck coefficient. The power factor of Al/Pb doping reached ~7.67 μWcmK at 873 K. At the same time, the thermal conductivity of all doped samples within the test temperature range maintained a low level (<1.2 WmK). Finally, the value of the Al/Pb-doped BiCuSeO reached ~1.14 at 873 K, which is ~2.72 times that of the pure phase, and the thermoelectric properties of the matrix were effectively improved.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10538208PMC
http://dx.doi.org/10.3390/mi14091757DOI Listing

Publication Analysis

Top Keywords

carrier concentration
16
carrier mobility
12
concentration mobility
8
bicuseo
8
mobility bicuseo
8
thermoelectric properties
8
increasing carrier
8
dope bicuseo
8
bicuseo matrix
8
carrier
7

Similar Publications

Glutathione-Responsive Metal-Organic-Framework-Derived MnO/(A/R)TiO Nanoparticles for Enhanced Synergistic Sonodynamic/Chemodynamic/Immunotherapy.

ACS Nano

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, 2699 Qianjin Street, Changchun 130012, China.

Despite the potential of sonodynamic therapy (SDT) in treating malignant tumors, the lack of effective sonosensitizers has limited its clinical implementation. In this study, we explored the relationship between the heteroatom doping concentration in metal-organic frameworks and interface formation after pyrolysis by regulating the addition of manganese sources and successfully derived Z-scheme heterojunctions MnO/(A/R)TiO (MTO) in situ from MIL-125-NH (Ti/Mn). The electron transfer pathway introduced by interfacial contact promoted carrier separation and greatly preserved the effective redox components, significantly influencing the performance of reactive oxygen species generation.

View Article and Find Full Text PDF

Background: Tavaborole (TAV), a benzoxaborole derivative, is an FDA-approved antifungal agent for treating onychomycosis, a common and persistent fungal infection of the toenails.

Objective: This study aimed to develop a robust stability-indicating HPTLC method to determine TAV in nanostructured lipid carriers (NLC) using a comprehensive approach that includes risk assessment, and Analytical Quality by Design.

Methods: The critical method parameters influencing the HPTLC results were screened using a Placket-Burman screening design followed by its optimization using a central composite optimization design.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

Laboratory of Neurobiology, Department of Neurology, Poznan, Poland.

Background: Alzheimer's disease (AD) is characterized by an acquired, progressive impairment of cognitive functions. The pathogenesis of this disease remains unknown. It is explained based on the following theories: amyloid cascade, inflammation, vascular, and infection hypothesis.

View Article and Find Full Text PDF

Basic Science and Pathogenesis.

Alzheimers Dement

December 2024

University of Huddersfield, Huddersfield, Yorkshire, United Kingdom.

Background: Alzheimer's Disease research lacks a suitable model to match the sporadic version of Alzheimer's Disease (SAD). We a propose a model that will use 7PA2 cells which is a CHO modified to express the V717F mutation for APP (Indiana mutation). The 7PA2 cells will then be placed inside alginate microbeads to produce a factory that constantly produces amyloid species.

View Article and Find Full Text PDF

Background: Autosomal dominant progranulin (GRN) mutations are a common genetic cause of frontotemporal lobar degeneration. Though clinical trials for GRN-related therapies are underway, there is an unmet need for biomarkers that can predict symptom onset and track disease progression. We previously showed that presymptomatic GRN carriers exhibit thalamocortical hyperconnectivity that increases with age when they are presumably closer to symptom onset.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!