Investigation of Performance Parameters of Spherical Gold Nanoparticles in Localized Surface Plasmon Resonance Biosensing.

Micromachines (Basel)

DTU Electro, Department of Electrical and Photonics Engineering, Technical University of Denmark, DK-2800 Kongens Lyngby, Denmark.

Published: August 2023

In this paper, we present numerical and experimental results on Localized Surface Plasmon Resonance (LSPR) refractive index (RI) sensitivity, Figure of Merit (FoM), and penetration depth () dependence on spherical gold nanoparticles (AuNPs) size, and the effects of AuNP dimer interparticle distance () studied numerically. These parameters were calculated and observed for = 20, 40, 60, 80, and 100 nm diameter spherical AuNPs. Our investigation shows = 60 nm AuNPs give the best FoM. The AuNP dimer interparticle distance can significantly influence the RI sensitivity. Therefore, the effect of distances between pairs of = 20 nm and 60 nm AuNPs is shown. We discuss the importance of penetration depth information for AuNPs functionalized with aptamers for biosensing in the context of aptamer size.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10535430PMC
http://dx.doi.org/10.3390/mi14091717DOI Listing

Publication Analysis

Top Keywords

spherical gold
8
gold nanoparticles
8
localized surface
8
surface plasmon
8
plasmon resonance
8
penetration depth
8
aunp dimer
8
dimer interparticle
8
interparticle distance
8
aunps
5

Similar Publications

A spherical nucleic acid (SNA, AuNPs-aptamer) into CRISPR/Cas12a system combined with poly T-template copper nanoparticles as fluorescence reporter was fabricated to establish an amplification-free sensitive method for Staphylococcus aureus (S. aureus) detection. This method, named PTCas12a, utilizes the concept that the bifunction of SNA recognizes the S.

View Article and Find Full Text PDF

Thermal Transport through CTAB- and MTAB-Functionalized Gold Interfaces Using Molecular Dynamics Simulations.

J Chem Inf Model

January 2025

251 Nieuwland Science Hall, Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States.

Thermal transport coefficients, notably the interfacial thermal conductance, were determined in planar and spherical gold interfaces functionalized with CTAB (cetyltrimethylammonium bromide) or MTAB (16-mercapto-hexadecyl-trimethylammonium bromide) using reverse nonequilibrium molecular dynamics (RNEMD) methods. The systems of interest included (111), (110), and (100) planar facets as well as nanospheres ( = 10 Å). The effect of metal polarizability was investigated through the implementation of the density-readjusted embedded atom model (DR-EAM), a polarizable metal potential.

View Article and Find Full Text PDF

Recent advancements in nanoscience underscore the transformative potential of nanomaterials in environmental and biological applications. In this study, we synthesized gold nanoparticles (Au@ NPs) using an eco-friendly and cost-effective approach, leveraging peel extract as both a capping and reducing agent. This method presents a sustainable alternative to traditional chemical agents.

View Article and Find Full Text PDF

Plasmonic nanomaterials are effective photoacoustic (PA) contrast agents with diverse biomedical applications. While silica coatings on gold nanoparticles (AuNPs) have been demonstrated to increase PA efficiency, the underlying mechanism remains elusive. Here, we systematically investigated the impact of silica coatings on PA generation under picosecond and nanosecond laser pulses.

View Article and Find Full Text PDF

The CRISPR-Cas12a system has shown tremendous potential for developing efficient biosensors. Albeit important, current CRISPR-Cas system-based diagnostic technologies (CRISPR-DX) highly rely on an additional preamplification procedure to obtain high sensitivity, inevitably leading to issues such as complicated assay workflow, cross-contamination, etc. Herein, a spherical protospacer-adjacent motif (PAM)-antenna-enhanced CRISPR-Cas12a system is fabricated for universal amplification-free nucleic acid detection with a detection limit of subfemtomolar.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!