AI Article Synopsis

Article Abstract

: Conjugated linoleic acid (CLA) can improve bone health in animals, yet the effects on humans have not been consistent. Therefore, this parallel randomised controlled trial aimed to assess the effect of CLA supplementation on bone mineral density (BMD) and content (BMC) in overweight or obese women. : The study population included 74 women who were divided into the CLA ( = 37) and control ( = 37) groups. The CLA group received six capsules per day containing approximately 3 g of cis-9, trans-11 and trans-10, cis-12 CLA isomers in a 50:50 ratio. The control group received the same number of placebo capsules that contained sunflower oil. BMC and BMD at total body, lumbar spine (L1-L4), and femoral neck were measured before and after a three-month intervention. : The comparison of BMC and BMD for the total body, lumbar spine (L1-L4), and femoral neck before and after the intervention showed no differences between the groups. However, a within-group analysis demonstrated a significant increase in BMC ( = 0.0100) and BMD ( = 0.0397) at lumbar spine (L1-L4) in the CLA group. Nevertheless, there were no significant differences between the CLA and placebo groups in changes in all analysed densitometric parameters. : Altogether, three-month CLA supplementation in overweight and obese women did not improve bone health, although the short intervention period could have limited our findings, long-term intervention studies are needed. The study protocol was registered in the German Clinical Trials Register database (ID: DRKS00010462, date of registration: 4 May 2016).

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537680PMC
http://dx.doi.org/10.3390/medicina59091690DOI Listing

Publication Analysis

Top Keywords

overweight obese
12
lumbar spine
12
spine l1-l4
12
conjugated linoleic
8
linoleic acid
8
densitometric parameters
8
randomised controlled
8
controlled trial
8
cla
8
improve bone
8

Similar Publications

Background: This study investigates the relationship between sagittal abdominal diameter (SAD), a measure of abdominal obesity, and kidney stone disease (KSD) in the U.S. population.

View Article and Find Full Text PDF

Childhood obesity increases the risk of developing metabolic diseases in adulthood, since environmental stimuli during critical windows of development can impact on adult metabolic health. Studies demonstrating the effect of prepubertal diet on adult metabolic disease risk are still limited. We hypothesized that a prepubertal control diet (CD) protects the adult metabolic phenotype from diet-induced obesity (DIO), while a high-fat diet (HFD) would predispose to adult metabolic alterations.

View Article and Find Full Text PDF

Background: Obesity is a risk factor for cardiovascular diseases and associated with reduced life expectancy metabolic bariatric surgery (MBS) is the treatment indicated when patients are unable to lose weight through lifestyle changes and medication alone. However, more evidence is necessary to show non-inferiority of e-health compared to in-person monitoring with regard to important parameters for the success of surgical treatment of obesity such as anthropometric changes.

Methods And Analyses: This review study will include cohort studies involving individuals with obesity and e-health or in-person patient monitoring before and after MBS.

View Article and Find Full Text PDF

The unique architecture of the liver consists of hepatic lobules, dividing the hepatic features of metabolism into 2 distinct zones, namely the pericentral and periportal zones, the spatial characteristics of which are broadly defined as metabolic zonation. R-spondin3 (Rspo3), a bioactive protein promoting the Wnt signaling pathway, regulates metabolic features especially around hepatic central veins. However, the functional impact of hepatic metabolic zonation, regulated by the Rspo3/Wnt signaling pathway, on whole-body metabolism homeostasis remains poorly understood.

View Article and Find Full Text PDF

Immune Dysregulation in Obesity.

Annu Rev Pathol

January 2025

Diabetes Center and Department of Laboratory Medicine, University of California, San Francisco, California, USA;

The immune system plays fundamental roles in maintaining physiological homeostasis. With the increasing prevalence of obesity-a state characterized by chronic inflammation and systemic dyshomeostasis-there is growing scientific and clinical interest in understanding how obesity reshapes immune function. In this review, we propose that obesity is not merely an altered metabolic state but also a fundamentally altered immunological state.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!