Anaplastic large cell lymphoma (ALCL) with leukaemic presentation (either ab initio or along the course of the disease) has been rarely reported. Irrespective of ALK expression in the neoplastic cells, it features a dismal prognosis. We report a rare case of leukaemic, small cell variant ALK-positive ALCL with 9-year survival in a young woman who was treated upfront with corticosteroids and standard chemotherapy, and review thoroughly the previously published cases. Such an unexpected, good outcome hints at the existence of different clinical subgroups in the leukaemic variant of ALK-positive ALCL.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10537167 | PMC |
http://dx.doi.org/10.3390/medicina59091628 | DOI Listing |
Leukemia
January 2025
Department of Medicine III, LMU University Hospital, LMU Munich, Munich, Germany.
Refractory disease and relapse are major challenges in acute myeloid leukemia (AML) therapy attributed to survival of leukemic stem cells (LSC). To target LSCs, antibody-drug conjugates (ADCs) provide an elegant solution, combining the specificity of antibodies with highly potent payloads. We aimed to investigate if FLT3-20D9h3-ADCs delivering either the DNA-alkylator duocarmycin (DUBA) or the microtubule-toxin monomethyl auristatin F (MMAF) can eradicate quiescent LSCs.
View Article and Find Full Text PDFCell Commun Signal
January 2025
Department of Oncological Sciences, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY, 10029, USA.
One hallmark of cancer is the upregulation and dependency on glucose metabolism to fuel macromolecule biosynthesis and rapid proliferation. Despite significant pre-clinical effort to exploit this pathway, additional mechanistic insights are necessary to prioritize the diversity of metabolic adaptations upon acute loss of glucose metabolism. Here, we investigated a potent small molecule inhibitor to Class I glucose transporters, KL-11743, using glycolytic leukemia cell lines and patient-based model systems.
View Article and Find Full Text PDFHematol Rep
January 2025
Department of 1st Internal Medicine, Medical School, University of Pécs, Ifjúság Str. 13, 7624 Pécs, Hungary.
T-cell prolymphocytic leukemia (T-PLL) is a rare mature T-cell lymphoma that is usually associated with poor prognosis and short overall survival. We present a case of a 61-year-old woman presenting with T-PLL and the leukemic cells harboring (-breakpoint cluster region; -ABL protooncogene 1) fusion transcripts as the result of a variant of t(9;22)(q34;q11) called Philadelphia translocation: t(9;22;18)(q34;q11;q21). Sequencing revealed a rare transcript with an exon 6 breakpoint corresponding to e6a2 transcripts, which has thus far been reported in only 26 cases of leukemias.
View Article and Find Full Text PDFFront Pharmacol
January 2025
Department of Surgical Sciences, Functional Pharmacology and Neuroscience, Uppsala University, Uppsala, Sweden.
Background: Xanthones are dubbed as putative lead-like molecules for cancer drug design and discovery. This study was aimed at the synthesis, characterization, and target fishing of novel xanthone derivatives.
Methods: The products of reactions of xanthydrol with urea, thiourea, and thiosemicarbazide reacted with α-haloketones to prepare the thiazolone compounds.
Front Cell Dev Biol
January 2025
Department of Hematology and Transplantology, Faculty of Medicine, Medical University of Gdansk, Gdańsk, Poland.
Recent experimental findings indicate that cancer stem cells originate from transformed very small embryonic-like stem cells. This finding represents an essential advancement in uncovering the processes that drive the onset and progression of cancer. In continuously growing cell lines, for the first time, our team's follow-up research on leukemia, lung cancer, and healthy embryonic kidney cells revealed stages that resembles very small precursor stem cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!