While the bulk strontium titanate (STO) crystal characteristics are relatively well known, ultrathin perovskites' nanostructure, chemical composition, and crystallinity are quite complex and challenging to understand in detail. In our study, the DFT methods were used for modelling the Raman spectra of the STO bulk (space group I4/mcm) and 5-21-layer thin films (layer group p4/mbm) in tetragonal phase with different thicknesses ranging from ~0.8 to 3.9 nm. Our calculations revealed features in the Raman spectra of the films that were absent in the bulk spectra. Out of the seven Raman-active modes associated with bulk STO, the frequencies of five modes (2E A, B, and B) decreased as the film thickness increased, while the low-frequency B and higher-frequency E modes frequencies increased. The modes in the films exhibited vibrations with different amplitudes in the central or surface parts of the films compared to the bulk, resulting in frequency shifts. Some peaks related to bulk vibrations were too weak (compared to the new modes related to films) to distinguish in the Raman spectra. However, as the film thickness increased, the Raman modes approached the frequencies of the bulk, and their intensities became higher, making them more noticeable in the Raman spectrum. Our results could help to explain inconsistencies in the experimental data for thin STO films, providing insights into the behavior of Raman modes and their relationship with film thickness.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532996PMC
http://dx.doi.org/10.3390/ma16186207DOI Listing

Publication Analysis

Top Keywords

raman spectra
12
film thickness
12
strontium titanate
8
thickness increased
8
modes films
8
raman modes
8
films
7
raman
7
bulk
7
modes
7

Similar Publications

Luminescence of the CsZrCl under High Pressure.

Inorg Chem

January 2025

Institute of Physics, Polish Academy of Sciences, Al. Lotników 32/46, Warsaw 02-668, Poland.

The photoluminescence (PL) and Raman spectra of the CsZrCl crystal over a wide range of pressures were studied in this work for the first time. PL measurements were performed up to 10 GPa, while the Raman spectra were measured up to 20 GPa. The PL data revealed a linear blue shift of the emission maximum from about 2.

View Article and Find Full Text PDF

Anisotropic materials with low symmetries hold significant promise for next-generation electronic and quantum devices. 2M-WS, which is a candidate for topological superconductivity, has garnered considerable interest. However, a comprehensive understanding of how its anisotropic features contribute to unconventional superconductivity, along with a simple, reliable method to identify its crystal orientation, remains elusive.

View Article and Find Full Text PDF

This study evaluates the deposition of diamond-like carbon (DLC) films with copper impurities on a glass substrate using simultaneous direct current (DC) and radio frequency (RF) magnetron sputtering. The structural, optical, electrical, and mechanical properties, as well as the surface topography of the films, were investigated under various DC power levels using Raman spectroscopy, ellipsometry, UV-VIS, I-V measurements, nanoindentation, AFM, and FESEM. Results indicate that increasing the DC power to the graphite target from 60 to 120 , while maintaining a constant 10  of RF power to the copper target, enhances the optical absorption coefficient of the films and increases the optical bandgap from 0.

View Article and Find Full Text PDF

High temperature QDs organization and re-crystallization in glass supported MgO QDs doped PMMA film.

Sci Rep

January 2025

Condensed Matter Physics & Nanoscience Research Laboratory, Department of Physics and Material Science, Madan Mohan Malaviya University of Technology, Gorakhpur, 273010, U.P, India.

Article Synopsis
  • The study focuses on creating composite films of poly (methylmethacrylate) (PMMA) blended with magnesium oxide quantum dots (MgO QDs) at varying concentrations, and the films were annealed at 130°C for different durations to observe changes in their properties.
  • Analysis revealed that the initial crystallinity of the PMMA films decreased with annealing but slightly improved with the diffusion and coalescence of MgO QDs, leading to the formation of larger clusters that influenced the films' structural properties.
  • The research highlights the significance of temperature and molecular forces in the evolution of the film's morphology and stability, demonstrating unique energy dissipation mechanisms and the complex interplay of inter- and intra
View Article and Find Full Text PDF

CuZnSn(S,Se) (CZT(S,Se)) thin films exhibit the characteristics necessary to be effective absorbers in solar cells. In this report, the room temperature experimental Raman scattering spectra, recorded at different excitation wavelengths, are systematically analyzed theoretically using the results of DFT harmonic frequencies calculations at the Γ-point for various modifications of kesterite (KS), stannite (ST), and pre-mixed Cu-Au (PMCA) crystal structures. The specific anharmonism-induced features in the spectra of CZT(S,Se) crystals are identified, and the spectral lineshapes at varied strengths of anharmonic interaction are simulated.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!