To address the issue of inadequate strength and plasticity in magnesium matrix composites, SiC preforms were prepared using the freeze-casting process. The effects of sintering temperature on the microstructure, mechanical properties, and fracture behavior of SiCp/AZ91 magnesium matrix composites were studied by controlling the density of SiC preforms through low-temperature sintering. The results indicate that as the sintering temperature decreases, the reaction products in the SiC layer decrease, resulting in lower SiC preform density and increased content of AZ91 alloy filling in the layer. The increased alloy content in the ceramic layer not only inhibits crack initiation but also hinders crack propagation, thereby endowing the SiCp/AZ91 laminated material with excellent compressive strength and compressive strain. At the sintering temperature of 900 °C, the SiCp/AZ91 laminated material exhibits impressive compressive strength and strain values of 623 MPa and 8.77%, respectively, which demonstrates an excellent combination of strength and toughness.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532462 | PMC |
http://dx.doi.org/10.3390/ma16186168 | DOI Listing |
Waste Manag
January 2025
Qilu University of Technology (Shandong Academy of Sciences), Advanced Materials Institute, Shandong Engineering Research Centre of Municipal Sludge Disposal, Jinan 250014, China. Electronic address:
Municipal solid waste incineration fly ash (MSWIFA) is considered a hazardous solid waste, traditionally disposed by solidified landfill methods. However, solidified landfills present challenges with leaching heavy metals, polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs). To address this issue, this study examined two pretreatment methods for MSWIFA: sintering at 850℃ for 30 min and washing with three water baths (20 min each) at a 3:1 liquid-solid ratio.
View Article and Find Full Text PDFPharmaceutics
December 2024
Department of Pharmaceutical Technology and Cosmetology, Faculty of Pharmacy, University of Belgrade, Vojvode Stepe 450, 11221 Belgrade, Serbia.
Background/objectives: Selective laser sintering (SLS) is one of the most promising 3D printing techniques for pharmaceutical applications as it offers numerous advantages, such as suitability to work with already approved pharmaceutical excipients, the elimination of solvents, and the ability to produce fast-dissolving, porous dosage forms with high drug loading. When the powder mixture is exposed to elevated temperatures during SLS printing, the active ingredients can be converted from the crystalline to the amorphous state, which can be used as a strategy to improve the dissolution rate and bioavailability of poorly soluble drugs. This study investigates the potential application of SLS 3D printing for the fabrication of tablets containing the poorly soluble drug carvedilol with the aim of improving the dissolution rate of the drug by forming an amorphous form through the printing process.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
School of Engineering, Mackenzie Presbyterian University, São Paulo 01302-907, Brazil.
Ceramic detachments in cladding systems are indicative of adhesion loss between the ceramic tiles and the substrate or its adhesive mortar due to inadequate quality workmanship, the quality of the adhesive mortar or that of the ceramic material, whether acting simultaneously or not. The shear stresses resulting from the ceramic tiles' expansion due to humidity accelerate this process. There is a shortage of studies on the quality of ceramic tiles and adhesive mortars.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Faculty of Materials Science and Ceramics, AGH University of Krakow, 30-059 Krakow, Poland.
This paper presents a comprehensive study of two tool materials designed for the machining of Inconel 718 superalloy, produced through two distinct sintering techniques: High Pressure-High Temperature (HPHT) sintering and Spark Plasma Sintering (SPS). The first composite (marked as BNT), composed of 65 vol% cubic boron nitride (cBN), was sintered from the cBN-TiN-TiSiC system using the HPHT technique at a pressure of 7.7 GPa.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Department of Chemistry and Waterloo Institute for Nanotechnology, University of Waterloo, Waterloo, ON N2L 3G1, Canada.
As reported during the last five years, SnSe is one of the leading thermoelectric (TE) materials with a very low lattice thermal conductivity. However, its elements are not as heavy as those of classical thermoelectric materials like PbTe or BiTe. Its outstanding TE properties were revealed after repeated purification steps to minimize the amount of oxygen contamination, followed by spark plasma sintering.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!