Firefighters are exposed to occupational hazards and have a higher prevalence of health issues. The gut microbiota plays a crucial role in the immune, endocrine, and neural systems, and disruptions in its composition can impact health outcomes. This pilot study aimed to investigate the potential association between occupational factors, changes in gut microbiota, and the development of adverse health outcomes in firefighters. To test this hypothesis, we recruited 15 firefighters and age/sex-matched controls to investigate the relationship between occupational environment and gut microbiota. Firefighters exhibit lower intestinal bacterial alpha diversity and a higher presence of pathogenic bacteria than the control. Moreover, unique gut bacterial taxa were observed in firefighters with high post-traumatic stress disorder (PTSD) scores, which could contribute to immune dysregulation and higher susceptibility to pathogen colonization. These preliminary findings suggest that occupational factors, including exposure to traumatic stressors and chemicals, may influence firefighters' health by modulating their gut microbiota. The observed changes in gut microbiota composition and the potential link to occupational hazards highlight the need for further research in larger sample-size studies. Understanding the role of gut microbiota in firefighter health may have implications for preventive measures and interventions to mitigate occupational health risks and improve overall well-being.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533145 | PMC |
http://dx.doi.org/10.3390/life13091928 | DOI Listing |
Sci Adv
January 2025
Guangdong Provincial Key Laboratory of Construction and Detection in Tissue Engineering, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong 510515, P. R. China.
It is urgent for patients with chronic kidney disease (CKD) to develop a robust and facile therapy for effective control of serum phosphate and reasonable regulation of gut microbiota, which are aiming to prevent cardiovascular calcification and reduce cardiovascular complications. Here, bioinspired by intestinal microstructures, we developed biomimetic wrinkled prebiotic-containing microspheres with enhanced intestinal retention and absorption for reducing hyperphosphatemia and vascular calcification of CKD model rats. The resultant CSM@5 microspheres exhibited favorable phosphate binding capacity in vitro and could effectively reduce serum concentration of phosphorous in vivo.
View Article and Find Full Text PDFJ Physiol
January 2025
Laboratory of Developmental Biology and Genomics, Research Institute for Veterinary Science, College of Veterinary Medicine, Seoul National University, Seoul, Republic of Korea.
Exercise provides health benefits to multiple metabolic tissues through complex biological pathways and interactions between organs. However, investigating these complex mechanisms in humans is still limited, making mouse models extremely useful for exploring exercise-induced changes in whole-body metabolism and health. In this review, we focus on gaining a broader understanding of the metabolic phenotypes and molecular mechanisms induced by exercise in mouse models.
View Article and Find Full Text PDFPhysiol Genomics
January 2025
Department of Radiology, Wuhan Integrated Traditional Chinese and Western Medicine Hospital (Wuhan First Hospital), Wuhan 430022, Hubei, China.
This research explored the effect of high-fiber diet based on gut microbiota on chronic heart failure (HF) patients. Chronic HF patients, who had undergone a dietary survey indicating a daily dietary fiber intake of less than 15g/d were divided into the control and study groups (n = 50). In addition to conventional heart failure treatment, the study group received dietary guidance, while the control group did not receive any dietary guidance and maintained their usual low-fiber dietary habits.
View Article and Find Full Text PDFCureus
December 2024
Psychiatry, Patton State Hospital, San Bernardino, USA.
Introduction: Inflammatory bowel disease (IBD) and irritable bowel syndrome (IBS) are chronic disorders of the gastrointestinal tract associated with gut microbiota dysbiosis and inflammation. Serum-derived bovine immunoglobulin (SBI) is used to manage IBS and IBD and has shown prebiotic-like effects in ex vivo models. Re-establishing a healthy gut microbiome with novel treatments like SBI could help treat the underlying causes of these diseases leading to higher and sustained patient response.
View Article and Find Full Text PDFChin J Integr Med
January 2025
Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Xinjiang Medical University, Urumqi, 830017, China.
Ulcerative colitis (UC) is a chronic, non-specific intestinal disease of unknown etiology, with high incidence rates worldwide. At present, Western medicine treatments have been associated with more adverse effects and poor efficacy. Chinese medicine (CM) is commonly used as an adjuvant treatment for the unique advantages in regulating immune function, repairing intestinal mucosa, and alleviating intestinal inflammation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!