In this narrative review, we aim to point out the close relationship between mpox virus (MPXV) infection and the role of saliva as a diagnostic tool for mpox, considering the current molecular approach and in the perspective of OMICs application. The MPXV uses the host cell's rough endoplasmic reticulum, ribosomes, and cytoplasmic proteins to replicate its genome and synthesize virions for cellular exit. The presence of oral mucosa lesions associated with mpox infection is one of the first signs of infection; however, current diagnostic tools find it difficult to detect the virus before the rashes begin. MPXV transmission occurs through direct contact with an infected lesion and infected body fluids, including saliva, presenting a potential use of this fluid for diagnostic purposes. Currently available diagnostic tests for MPXV detection are performed either by real-time quantitative PCR (RT-qPCR) or ELISA, which presents several limitations since they are invasive tests. Despite current clinical trials with restricted sample size, MPXV DNA was detected in saliva with a sensitivity of 85%-100%. In this context, the application of transcriptomics, metabolomics, lipidomics, or proteomics analyses coupled with saliva can identify novel disease biomarkers. Thus, it is important to note that the identification and quantification of salivary DNA, RNA, lipid, protein, and metabolite can provide novel non-invasive biomarkers through the use of OMICs platforms aiding in the early detection and diagnosis of MPXV infection. Untargeted mass spectrometry (MS)-based proteomics reveals that some proteins also expressed in saliva were detected with greater expression differences in blood plasma when comparing mpox patients and healthy subjects, suggesting a promising alternative to be applied in screening or diagnostic platforms for mpox salivary diagnostics coupled to OMICs.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531708 | PMC |
http://dx.doi.org/10.3390/ijms241814362 | DOI Listing |
Sci Rep
January 2025
Translational and Clinical Research Institute, Newcastle University Medical School, Newcastle upon Tyne, NE2 4HH, GB, United Kingdom.
SARS-CoV-2 is the viral pathogen responsible for COVID-19. Although morbidity and mortality frequently occur as a result of lung disease, the gastrointestinal (GI) tract is recognized as a primary location for SARS-CoV-2. Connections and interactions between the microbiome of the gut and respiratory system have been linked with viral infections via what has been referred to as the 'gut-lung axis' with potential aerodigestive communication in health and disease.
View Article and Find Full Text PDFHead Neck Pathol
January 2025
Department of Pathology, University Medical Center Utrecht, Utrecht, 3508 GA, The Netherlands.
Purpose: The NAB2::STAT6 fusion is predominantly associated with solitary fibrous tumors (SFTs) and is utilized in diagnosing SFTs through nuclear STAT6 protein overexpression. Recent studies expanded the phenotypic spectrum of NAB2::STAT6 rearranged neoplasms, including adamantinoma-like and teratocarcinosarcoma-like phenotypes. We report a case of a NAB2::STAT6 rearranged epithelial tumor exhibiting sebaceous differentiation in the parotid gland.
View Article and Find Full Text PDFJ Peripher Nerv Syst
March 2025
Referral Center for Familial Amyloid Polyneuropathy and Other Rare Peripheral Neuropathies (CERAMIC) and Department of Neurology, Bicêtre University Hospital, AP-HP, Le Kremlin Bicêtre, France.
Objective: To assess the effectiveness of labial minor salivary gland biopsy (LSGB) alone or in combination with punch skin biopsy (SB) for the detection of amyloid deposits in hereditary transthyretin amyloidosis with polyneuropathy (ATTRv-PN).
Methods: In this single-center retrospective study, Congo red staining of minimal invasive LSGB (4 mm) and SB (3 mm) was assessed in ATTRv-PN patients consecutively evaluated between 2012 and 2023.
Results: Histopathological data of 171 ATTRv-PN, including 49 early-onset p.
Talanta
December 2024
Department of Chemical Engineering, National Taiwan University of Science and Technology, Taiwan. Electronic address:
Bioactive materials and biosensing technologies are emerging as pivotal tools in the early detection and management of oral cancer, a disease characterized by high morbidity and mortality rates. Recent advancements in nanotechnology have facilitated the development of innovative biosensors that utilize bioactive materials for non-invasive diagnostics, particularly through salivary analysis. These biosensors, including electrochemical, optical, and molecular types, target specific biomarkers such as DNA, RNA, and proteins associated with oral cancer.
View Article and Find Full Text PDFCytokine
January 2025
Centre for Medical Biotechnology, Maharshi Dayanand University, Rohtak, Haryana, India. Electronic address:
Background: Chronic smoking is an established risk factor for oral cancer (OC). The role of tobacco in oral squamous cell cancer (OSCC) emphasizes the need for non-invasive diagnostic approaches to identify early molecular alterations and improve patient outcomes. Salivary exosomes, which contain proteins, lipids, and nucleic acids, accessible and rich in biological content, making them interesting candidate biomarkers.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!