Molecular Insight into Iron Homeostasis of Acute Myeloid Leukemia Blasts.

Int J Mol Sci

Laboratory of Fundamental and Applied Bioenergetics (LBFA), University Grenoble Alpes, INSERM U1055, 38000 Grenoble, France.

Published: September 2023

Acute myeloid leukemia (AML) remains a disease of gloomy prognosis despite intense efforts to understand its molecular foundations and to find efficient treatments. In search of new characteristic features of AML blasts, we first examined experimental conditions supporting the amplification of hematological CD34 progenitors ex vivo. Both AML blasts and healthy progenitors heavily depended on iron availability. However, even if known features, such as easier engagement in the cell cycle and amplification factor by healthy progenitors, were observed, multiplying progenitors in a fully defined medium is not readily obtained without modifying their cellular characteristics. As such, we measured selected molecular data including mRNA, proteins, and activities right after isolation. Leukemic blasts showed clear signs of metabolic and signaling shifts as already known, and we provide unprecedented data emphasizing disturbed cellular iron homeostasis in these blasts. The combined quantitative data relative to the latter pathway allowed us to stratify the studied patients in two sets with different iron status. This categorization is likely to impact the efficiency of several therapeutic strategies targeting cellular iron handling that may be applied to eradicate AML blasts.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531764PMC
http://dx.doi.org/10.3390/ijms241814307DOI Listing

Publication Analysis

Top Keywords

aml blasts
12
iron homeostasis
8
acute myeloid
8
myeloid leukemia
8
healthy progenitors
8
cellular iron
8
blasts
6
iron
5
molecular insight
4
insight iron
4

Similar Publications

Loss of anticancer NK cell function in AML patients is associated with fatal disease progression and remains poorly understood. Here, we demonstrate that AML-blasts isolated from patients rapidly inhibit NK cell function and escape NK cell-mediated killing. Transcriptome analysis of NK cells exposed to AML-blasts revealed increased CREM expression and transcriptional activity, indicating enhanced cAMP signalling, confirmed by uniform production of the cAMP-inducing prostanoid PGE2 by all AML-blast isolates from patients.

View Article and Find Full Text PDF

Exploring treatment-driven subclonal evolution of prognostic triple biomarkers: Dual gene fusions and chimeric RNA variants in novel subtypes of acute myeloid leukemia patients with KMT2A rearrangement.

Drug Resist Updat

January 2025

Loma Linda University Cancer Center, Loma Linda, CA 92354, United States; Department of Basic Sciences, Loma Linda University, Loma Linda, CA 92354, United States. Electronic address:

Chromosomal rearrangements (CR) initiate leukemogenesis in approximately 50 % of acute myeloid leukemia (AML) patients; however, limited targeted therapies exist due to a lack of accurate molecular and genetic biomarkers of refractory mechanisms during treatment. Here, we investigated the pathological landscape of treatment resistance and relapse in 16 CR-AML patients by monitoring cytogenetic, RNAseq, and genome-wide changes among newly diagnosed, refractory, and relapsed AML. First, in FISH-diagnosed KMT2A (MLL gene, 11q23)/AFDN (AF6, 6q27)-rearrangement, RNA-sequencing identified an unknown CCDC32 (15q15.

View Article and Find Full Text PDF

The chronic myeloid leukemia (CML) is easily diagnosed by laboratory examination, however, rare BCR-ABL1 mRNA transcripts variants, such as e1a3 present diagnosis and therapeutic challenges. This case report details the diagnosis and management of a CML patient with the e1a3 transcript by FISH and RT-PCR. Following initial diagnosis, the patient was treated with the tyrosine kinase inhibitor (TKI) Flumatinib.

View Article and Find Full Text PDF

Acute leukemia (AL) is a diverse group of hematological malignancies characterised by the accumulation of immature blast cells in the bone marrow. Accurate classification into acute myeloid leukemia (AML) or acute lymphoblastic leukemia (ALL) is essential for treatment and prognosis. This study aimed to assess the performance of glass slide morphology (GSM) using a light microscope versus whole slide imaging (WSI) in diagnosing and classifying AL, using flow cytometry as the gold standard test.

View Article and Find Full Text PDF

Background: AML-M4Eo is a type of AML characterized by malignant proliferation of granulocyte and monocyte precursor cells accompanied by eosinophilia. Patients present as anemia, infection, bleeding, and tissue and organ infiltration. MICM classification makes the classification of AML more accurate and lays a foundation for the correct treatment and prognosis of AML.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!