Telomeres play pivotal roles in processes closely related to somatic senescence and aging, making them a compelling target for interventions aimed at combating aging and age-related pathologies. Ginsenoside, a natural compound, has emerged as a potential remedy for promoting healthy aging, yet how it protects telomeres remains incompletely understood. Here, we show that treatment of F1 can effectively restore the level of TRF2, thereby preserving telomere integrity. This restoration leads to inhibition of the DNA damage response and improvements in mitochondrial function and, ultimately, delays in cellular senescence. Conversely, depletion of TRF2 causes mitochondrial dysfunction, accompanied by increased oxidative stress, autophagy inhibition, insufficient energy metabolism, and the onset of cellular senescence. These observations underscore the critical role of TRF2 in maintaining telomere integrity and direct association with the initiation of cellular senescence. We conduct a further analysis, suggesting F1 could bind in proximity to the TRF2 heterodimer interface, potentially enhancing dimerization stability. These findings suggest that F1 may be a promising natural remedy for anti-aging, and restoring TRF2 could potentially prevent telomere-dependent diseases commonly associated with the aging process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531559PMC
http://dx.doi.org/10.3390/ijms241814241DOI Listing

Publication Analysis

Top Keywords

cellular senescence
16
delays cellular
8
telomere integrity
8
senescence
5
trf2
5
ginsenoside f1-mediated
4
f1-mediated telomere
4
telomere preservation
4
preservation delays
4
cellular
4

Similar Publications

Aim/introduction: Senescence is a key driver of age-related kidney dysfunction, including diabetic kidney disease. Oxidative stress activates cellular senescence, induces abnormal glycolysis, and is associated with pyruvate kinase muscle isoform 2 (PKM2) dysfunction; however, the mechanisms linking PK activation to cellular senescence have not been elucidated. We hypothesized that PKM2 activation by TEPP-46 could suppress oxidative stress-induced renal tubular cell injury and cellular senescence.

View Article and Find Full Text PDF

Introduction: The deficiency of estrogen correlates with a range of diseases, notably Postmenopausal osteoporosis (PMO) and Parkinson's disease (PD). There is a possibility that PMO and PD may share underlying molecular mechanisms that are pivotal in their development and progression. The objective of this study was to identify critical genes and potential mechanisms associated with PMO by examining co-expressed genes linked to PD.

View Article and Find Full Text PDF

When cellular ageing is accelerated by various extrinsic/endogenous stimuli, regenerative function deteriorates, and enriched secretomes, such as the senescence-associated secretory phenotype (SASP), contribute to chronic inflammation and cause matrix degeneration. SASPs from senescent fibroblasts exacerbate cellular senescence via autocrine signalling and also accelerate skin ageing through the induction of neighbouring cell senescence via paracrine signalling. The interaction between dermis fibroblasts and their neighbours, adipose-derived stem cells (ADSCs) in the hypodermis, which lies deep in the dermis, is a potential target for skin ageing.

View Article and Find Full Text PDF

Background: Oncogene-Induced Senescence (OIS) is a form of senescence that occurs as a consequence of oncogenic overstimulation and possibly infection by oncogenic viruses. Whether senescence plays a role in the pathogenesis of cervical cancer (CC) is not well understood. Moreover, whether cervical epithelial cells that are part of the premalignant cervical intraepithelial neoplasia (CIN), exhibit markers of OIS in Human Papillomavirus (HPV)-infected tissue, has not been investigated.

View Article and Find Full Text PDF

PLK3 weakens antioxidant defense and inhibits proliferation of porcine Leydig cells under oxidative stress.

Sci Rep

January 2025

Department of Laboratory Animal Science, School of Basic Medical Sciences, Hengyang Medical School, University of South China, Hengyang, Hunan, China.

Aging is characterized by cellular degeneration and impaired physiological functions, leading to a decline in male sexual desire and reproductive capacity. Oxidative stress (OS) lead to testicular aging by impairing the male reproductive system, but the potential mechanisms remain unclear. In the present study, the functional status of testicular tissues from young and aged boars was compared, and the transcriptional responses of Leydig cells (LCs) to hydrogen peroxide (HO)-induced senescence were explored, revealing the role of OS in promoting aging of the male reproductive system.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!