Colorectal cancer (CRC) is one of the most common malignancies worldwide. Isolinderalactone (ILL), a sesquiterpene isolated from the root extract of , has been reported to exhibit anti-proliferative and anti-metastatic activities in various cancer cell lines. However, the mechanisms associated with its antitumor effects on CRC cells remain unclear. ILL treatment significantly suppressed proliferation and induced cell cycle G2/M arrest in CRC cells by inhibiting the expression of cyclin B, p-cdc2, and p-cdc25c and up-regulating the expression of p21. In addition, ILL induced mitochondria-associated apoptosis through the up-regulation of cleaved -caspase-9 and -3 expression. ILL induced autophagy by increasing the levels of LC3B in CRC cells, which was partially rescued by treatment with an autophagy inhibitor (chloroquine). Furthermore, ILL increases the accumulation of reactive oxygen species (ROS) and activates the MAPK pathway. Application of the ROS scavenger, N-acetyl cysteine (NAC), effectively inhibited ILL toxicity and reversed ILL-induced apoptosis, cell cycle arrest, autophagy, and ERK activation. Taken together, these results suggest that ILL induces G2/M phase arrest, apoptosis, and autophagy and activates the MAPK pathway via ROS-mediated signaling in human CRC cells.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532319PMC
http://dx.doi.org/10.3390/ijms241814246DOI Listing

Publication Analysis

Top Keywords

crc cells
16
cell cycle
12
apoptosis autophagy
8
cycle arrest
8
ros-mediated signaling
8
colorectal cancer
8
cancer cell
8
cell lines
8
ill induced
8
activates mapk
8

Similar Publications

Cuproptosis, a newly identified form of cell death, has drawn increasing attention for its association with various cancers, though its specific role in colorectal cancer (CRC) remains unclear. In this study, transcriptomic and clinical data from CRC patients available in the TCGA database were analyzed to investigate the impact of cuproptosis. Differentially expressed genes linked to cuproptosis were identified using Weighted Gene Co-Expression Network Analysis (WGCNA).

View Article and Find Full Text PDF

Knockdown of ribosomal protein L22-like 1 arrests the cell cycle and promotes apoptosis in colorectal cancer.

Cytojournal

November 2024

Key Laboratory of Microecology-Immune Regulatory Network and Related Diseases, College of Basic Medicine, Jiamusi University, Jiamusi, China.

Objective: Colorectal cancer (CRC) remains a remarkable challenge despite considerable advancements in its treatment, due to its high recurrence rate, metastasis, drug resistance, and heterogeneity. Molecular targets that can effectively inhibit CRC growth must be identified to address these challenges. Therefore, we aim to reveal the regulatory effect of ribosomal protein L22-like 1 (RPL22L1) on the proliferation and apoptosis of CRC cells and its potential mechanism.

View Article and Find Full Text PDF

Background: As a novel blocker of vascular endothelial growth factor receptor (VEGFR), fruquintinib has been approved for treating colorectal cancer (CRC). However, its dosage and therapeutic efficacy are limited by its widespread adverse reactions. Venetoclax, recognized as the initial inhibitor of B-cell lymphoma protein 2 (BCL2), has shown potential in boosting the effectiveness of immunotherapy against CRC.

View Article and Find Full Text PDF

This article discusses the interplay between colorectal cancer (CRC) stem cells, tumor microenvironment (TME), and gut microbiota, emphasizing their dynamic roles in cancer progression and treatment resistance. It highlights the adaptability of CRC stem cells, the bidirectional influence of TME, and the multifaceted impact of gut microbiota on CRC. The manuscript proposes innovative therapeutic strategies focusing on these interactions, advocating for a shift towards personalized and ecosystem-targeted treatments in CRC.

View Article and Find Full Text PDF

Colorectal cancer (CRC) is the second leading cause of cancer-related deaths worldwide. Due to the poor therapeutic efficacy of CRC treatments and poor prognosis of the disease, effective treatment strategies are urgently needed. As long-term proteotoxic stress is a major cause of cell death, agents that induce proteotoxic stress offer a promising strategy for cancer intervention.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!