Magnetite and gallium substituted cuboferrites with a composition of GaFeO (0 ≤ x ≤ 1.4) were fabricated by thermal decomposition from acetylacetonate salts. The effect of Ga cation substitution on the structural and thermomagnetic behavior of 4-12 nm sized core-shell particles was explored by X-ray and neutron diffraction, small angle neutron scattering, transmission electron microscopy, Mössbauer spectroscopy, and calorimetric measurements. Superparamagnetic (SPM) behavior and thermal capacity against increasing gallium concentration in nanoferrites were revealed. The highest heat capacity typical for FeO@GaFeO and GaFeO@FeO is accompanied by a slight stimulation of fibroblast culture growth and inhibition of HeLa cell growth. The observed effect is concentration dependent in the range of 0.01-0.1 mg/mL and particles of GaFeO@FeO design have a greater effect on cells. Observed magnetic heat properties, as well as interactions with tumor and healthy cells, provide a basis for further biomedical research to use the proposed nanoparticle systems in cancer thermotherapy (magnetic hyperthermia).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10532423 | PMC |
http://dx.doi.org/10.3390/ijms241814184 | DOI Listing |
Rev Sci Instrum
November 2024
Department of Mechanical and Materials Engineering, University of Cincinnati, Cincinnati, Ohio 45221, USA.
In the "method of four coefficients," electrical resistivity (ρ), Seebeck coefficient (S), Hall coefficient (RH), and Nernst coefficient (Q) of a material are measured and typically fit or modeled with theoretical expressions based on Boltzmann transport theory to glean experimental insights into features of electronic structure and/or charge carrier scattering mechanisms in materials. Although well-defined and readily available reference materials exist for validating measurements of ρ and S, none currently exists for RH or Q. We show that measurements of all four transport coefficients-ρ, S, RH, and Q-can be validated using a single reference sample, namely, the low-temperature Seebeck coefficient Standard Reference Material® (SRM) 3451 (composition Bi2Te3+x) available from the National Institute for Standards and Technology (NIST) without the need for inter-laboratory sample exchange.
View Article and Find Full Text PDFSensors (Basel)
June 2024
Department of Polymers and Advanced Materials, Faculty of Chemistry, University of the Basque Country, UPV/EHU, 20018 San Sebastian, Spain.
We have prepared NiMnGa glass-coated microwires with different geometrical aspect ratios, = / (-diameter of metallic nucleus, and -total diameter). The structure and magnetic properties are investigated in a wide range of temperatures and magnetic fields. The XRD analysis illustrates stable microstructure in the range of from 0.
View Article and Find Full Text PDFChem Biodivers
June 2024
Department of Pharmaceutical Chemistry, College of Pharmacy, University of Mosul, postCode/>41001, Mosul, Iraq.
For the first time, kinetic thermomagnetic extraction is a novel approach presented in this work. It required the application of four distinct variables: rotation speed (50, 75, and 100 rpm), magnetic field (0.8, 1.
View Article and Find Full Text PDFNanoscale
March 2024
Northeastern University, Department of Mechanical and Industrial Engineering, Boston, MA 02115, USA.
Two-dimensional (2D) materials have attracted significant attention owing to their distinctive electronic, thermal, and mechanical characteristics. Recent advancements in both theoretical understanding and experimental methods have greatly contributed to the understanding of thermoelectric properties in 2D materials. However, thermomagnetic properties of 2D materials have not yet received the same amount of attention.
View Article and Find Full Text PDFInt J Mol Sci
September 2023
Faculty of Chemistry, University of Bialystok, K. Ciołkowskiego 1K, 15-245 Białystok, Poland.
Magnetite and gallium substituted cuboferrites with a composition of GaFeO (0 ≤ x ≤ 1.4) were fabricated by thermal decomposition from acetylacetonate salts. The effect of Ga cation substitution on the structural and thermomagnetic behavior of 4-12 nm sized core-shell particles was explored by X-ray and neutron diffraction, small angle neutron scattering, transmission electron microscopy, Mössbauer spectroscopy, and calorimetric measurements.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!