The time-resolved CIDNP method can provide information about degenerate exchange reactions (DEEs) involving short-lived radicals. In the temperature range from 8 to 65 °C, the DEE reactions of the guanosine-5'-monophosphate anion GMP(-H) with the neutral radical GMP(-H), of the N-acetyl tyrosine anion N-AcTyrO with a neutral radical N-AcTyrO, and of the tyrosine anion TyrO with a neutral radical TyrO were studied. In all the studied cases, the radicals were formed in the reaction of quenching triplet 2,2'-dipyridyl. The reorganization energies were obtained from Arrhenius plots. The rate constant of the reductive electron transfer reaction in the pair GMP(-H)/TyrO was determined at T = 25 °C. Rate constants of the GMP(-H) radical reduction reactions with TyrO and N-AcTyrO anions calculated by the Marcus cross-relation differ from the experimental ones by two orders of magnitude. The rate constants of several other electron transfer reactions involving GMP(-H)/GMP(-H), N-AcTyrO/N-AcTyrO, and TyrO/TyrO pairs calculated by cross-relation agree well with the experimental values. The rate of nuclear paramagnetic relaxation was found for the 3,5 and β-protons of TyrO and N-AcTyrO, the 8-proton of GMP(-H), and the 3,4-protons of DPH at each temperature. In all cases, the dependences of the rate of nuclear paramagnetic relaxation on temperature are described by the Arrhenius dependence.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530771PMC
http://dx.doi.org/10.3390/ijms241813860DOI Listing

Publication Analysis

Top Keywords

neutral radical
12
time-resolved cidnp
8
tyrosine anion
8
electron transfer
8
rate constants
8
tyro n-actyro
8
rate nuclear
8
nuclear paramagnetic
8
paramagnetic relaxation
8
rate
5

Similar Publications

Fenton reaction technology has worked well in water and wastewater treatment; however it is often limited by such problems as continuous external supply of HO, slow Fe/Fe cycle rate, high energy requirements, and maintenance of low pH during operation. Herein, a novel self-sufficient heterogeneous Fenton system based on Fe/MoS was designed, fabricated, and optimized to effectively address these problems. The combined presence of Fe and sulfur vacancies sites in MoS played a pivotal role in the generation of HOvia two-step single-electron reduction process without any energy consumption.

View Article and Find Full Text PDF

Purification and structural characterization of a neutral polysaccharide from Boletus auripes using self-made quaternary chitosan cryogel.

Int J Biol Macromol

December 2024

College of Chemistry and Molecular Sciences, Hubei Engineering Center of Natural Polymer-Based Medical Materials, Wuhan University, Wuhan 430072, China. Electronic address:

The purification of polysaccharides is an essential preliminary step in determining their chemical structure, although it presents significant challenges. In this research, a macro-porous monolith of quaternary chitosan cryogel was synthesized for the purification of a neutral polysaccharide from Boletus auripes. A homogeneous neutral polysaccharide (BAP-1a1) with a weight-average molecular weight of 4.

View Article and Find Full Text PDF

Activation of persulfates on carbon nanotubes for water decontamination: Is the non-radical process consistently considered across different pH levels?

J Hazard Mater

December 2024

State Key Laboratory of Hydraulics and Mountain River Engineering, College of Architecture and Environment, Sichuan University, Chengdu 610065, China.

Carbon nanotubes-driven persulfates oxidation processes (CNTs/PS) have been extensively studied for environmental remediation. Solution pH is one of the main factors affecting wastewater treatment, but it is often overlooked. Herein, we report the effect laws of pH on the mechanism of peroxymonosulfate (PMS) or peroxydisulfate (PDS) activation by CNTs.

View Article and Find Full Text PDF

Aerobic Ammoxidation of Cyclic Ketones to Dinitrile Products with Copper-Based Catalysts.

J Am Chem Soc

December 2024

Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Center for Carbon Neutral Chemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China.

Adiponitrile (ADN) has wide applications, especially in the polymer industry. With the substantial and increasing global demand for ADN, effective production of ADN using safe and abundant starting materials is highly desirable but very challenging. Herein, we discovered that CuBr, combined with 1,10-phenanthroline (phen), could effectively promote the ammoxidation reaction of cyclohexanone to ADN with a yield of >99% using aqueous ammonia as the nitrogen source and O as the terminal oxidant under mild reaction conditions (80 °C, 5 atm O).

View Article and Find Full Text PDF

Nucleophilic addition to α,β-unsaturated carbonyl compounds normally occurs at the carbonyl carbon or β-carbon. The direct α-nucleophilic addition at the α-carbon can hardly be achieved due to electronic mismatch. In this work, we report the nucleophilic addition of β-fluoroalkyl α-carbonyl carbocations that are prepared via -induced redox-neutral photocatalysis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!