Neurological disorders represent a global health problem. Current pharmacological treatments often lead to short-term symptomatic relief but have dose-dependent side effects, such as inducing orthostatic arterial hypotension due to the blockade of alpha receptors, cardiotoxic effects due to impaired repolarization, and atrioventricular block and tachycardia, including ventricular fibrillation. These challenges have driven the medical community to seek effective treatments for this serious global health threat. Mesenchymal stem cells (MSCs) are pluripotent cells with anti-inflammatory, anti-apoptotic, and immunomodulatory properties, providing a promising alternative due to their ability to differentiate, favorable culture conditions, in vitro manipulation ability, and robust properties. Although MSCs themselves rarely differentiate into neurons at the site of injury after transplantation in vivo, paracrine factors secreted by MSCs can create environmental conditions for cell-to-cell communication and have shown therapeutic effects. Recent studies have shown that the pleiotropic effects of MSCs, particularly their immunomodulatory potential, can be attributed primarily to these paracrine factors. Exosomes derived from MSCs are known to play an important role in these effects. Many studies have evaluated the potential of exosome-based therapies for the treatment of various neurological diseases. In addition to exosomes, various miRNAs derived from MSCs have been identified to regulate genes and alleviate neuropathological changes in neurodegenerative diseases. This review explores the burgeoning field of exosome-based therapies, focusing on the effects of MSC-derived exosomes and exosomal miRNAs, and summarizes recent findings that shed light on the potential of exosomes in the treatment of neurological disorders. The insights gained from this review may pave the way for innovative and effective treatments for these complex conditions. Furthermore, we suggest the therapeutic effects of exosomes and exosomal miRNAs from MSCs, which have a rescue potential in spinal cord injury via diverse signaling pathways.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530823 | PMC |
http://dx.doi.org/10.3390/ijms241813849 | DOI Listing |
J Spinal Cord Med
January 2025
Department of Physical Therapy, Ibaraki Prefectural University of Health Sciences, Ibaraki, Japan.
Objective: We investigated the construct validity, responsiveness, and interpretability of the Spinal Cord Injury Functional Ambulation Inventory (SCI-FAI) to determine its usefulness in measuring the functional level of gait.
Patients And Methods: This was a prospective observational study following the checklist of the Consensus-Based Standards for Selecting Health Measurement Instruments. The SCI-FAI consists of three items: Gait Parameter, Assistive Devices, and Temporal.
Neurourol Urodyn
January 2025
Department of Neurology, Hochzirl Hospital, Zirl, Austria.
Introduction: Neurogenic bladder dysfunction is a prevalent condition characterized by impaired bladder control resulting from neurological conditions, for example, spinal cord injury or traumatic brain injury (TBI). Detrusor overactivity is a typical symptom of central nervous system damage. A lesion affecting the pontine neural network typically results in loss of tonic inhibition exerted by the pontine micturition center and causes involuntary detrusor contractions.
View Article and Find Full Text PDFPM R
January 2025
Department of Physical Medicine and Rehabilitation, Mayo Clinic, Rochester, Minnesota, USA.
Background: Individuals with spinal cord injury (SCI) commonly have autonomic dysreflexia (AD) with increased sympathetic activity. After SCI, individuals have decreased baroreflex sensitivity and increased vascular responsiveness.
Objective: To evaluate the relationship between baroreflex and blood vessel sensitivity with AD symptoms.
Clin Exp Immunol
January 2025
Centre for Inflammation Research, Institute for Regeneration and Repair, University of Edinburgh, Edinburgh, UK.
Introduction: Multiple Sclerosis (MS) is a complex auto-inflammatory disease affecting the brain and spinal cord, which results in axonal de-myelination and symptoms including fatigue, pain, and difficulties with vision and mobility. The involvement of the immune system in the pathology of MS is well established, particularly the adaptive T cell response, and there has been a particular focus on the IL-17-producing subset of Th17 cells and their role in driving disease. However, the importance of innate immune cells has not been so well characterised.
View Article and Find Full Text PDFAnn Transl Med
December 2024
[This corrects the article DOI: 10.21037/atm-22-2672.].
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!