Chronic kidney disease (CKD) patients undergoing dialysis are at high risk of bone fractures. CKD-induced mineral and bone disorder is extended to periodontal disease due to changes in the ionic composition of saliva in CKD patients, dysregulating mineralization, hindering regeneration and thereby promoting the progression of dental complications. Despite the importance of cementum for overall oral health, the mechanisms that regulate its development and regeneration are not well comprehended, and a lack of sufficient in vitro experimental models has hindered research progress. In this study, the impact of experimental conditions on the calcification of cementoblasts was systematically investigated, aimed at establishing a standardized and validated model for the calcification of cementoblasts. The effects of phosphate, calcium, ascorbic acid, β-glycerolphosphate, dexamethasone, and fetal calf serum on the calcification process of cementoblasts were analyzed over a wide range of concentrations and time points by investigating calcium content, cell viability, gene expression and kinase activity. Cementoblasts calcified in a concentration- and time-dependent manner with higher concentrations of supplements cause a higher degree of calcification but decreased cell viability. Phosphate and calcium have a significantly stronger effect on cementoblast calcification processes compared to osteogenic supplements: ascorbic acid, β-glycerolphosphate, and dexamethasone induce calcification over a wide range of osteogenic signalling pathways, with osteopontin being a central target of gene regulation. Conversely, treatment with ascorbic acid, β-glycerolphosphate, and dexamethasone leads to activating only selected pathways, especially promoting bone sialoprotein expression. The developed and validated cementoblast calcification protocol, incubating up to 60% confluent cementoblasts with 1.9 mmol L of phosphate supplementation for a reasonable, multi-pathway calcification induction and 10 mmol L β-glycerolphosphate, 75 µmol L ascorbic acid and 10 nmol L dexamethasone for a reasonable osteogenic differentiation-based calcification induction, provides standard in vitro experimental models for better understanding cementoblast function and regeneration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10531176 | PMC |
http://dx.doi.org/10.3390/ijms241813829 | DOI Listing |
Foods
December 2024
Department of Marine Bio Food Science, Gangneung-Wonju National University, 7 Jukheon-gil, Gangneung 25457, Gangwon-do, Republic of Korea.
Commercial ascorbyl-6-O-esters (AEs) are composed of saturated fatty acids with relatively high melting points, resulting in limited solubility in lipophilic media. Therefore, a lipase-catalysed synthesis and purification method for ascorbyl-6-O-oleate (AO) was proposed in this study. The esterification synthesis (i.
View Article and Find Full Text PDFFoods
December 2024
Jiangxi Provincial Key Laboratory for Postharvest Storage and Preservation of Fruit and Vegetables, College of Agronomy, Jiangxi Agricultural University, Nanchang 330045, China.
Postharvest quality deterioration is a major factor affecting the economic value and marketing of Nanfeng tangerines. The objective of this study was to explore the effects of luteolin treatment on the postharvest quality and antioxidant capacity of Nanfeng tangerines. We applied 1 g/L and 3 g/L luteolin to fruit after harvest and evaluated the decay rate, postharvest quality, and antioxidant capacity during a 60-day storage period at room temperature.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Engineering Research Center for Fruit Crops of Guizhou Province, Engineering Technology Research Centre for Rosa Roxburghii of National Forestry and Grassland Adminstratio, College of Agriculture, Guizhou University, Guiyang 550025, China.
fruit has a short postharvest shelf life, with rapid declines in quality and antioxidant capacity. This research assessed how phytic acid affects the antioxidant capacity and quality of fruit while in the postharvest storage period and reveals its potential mechanism of action. The findings suggested that phytic acid treatment inhibits the production of malondialdehyde (MDA) and enhances the activities and expressions of glutathione peroxidase (GPX), peroxidase (POD), catalase (CAT), and superoxide dismutase (SOD) while decreasing the generation of superoxide anions (O) and hydrogen peroxide (HO).
View Article and Find Full Text PDFMolecules
January 2025
Institute of Life Sciences, School of Engineering, University of Applied Sciences and Arts Western Switzerland (HES-SO Valais Wallis), Rue de l'Industrie 19, 1950 Sion, Switzerland.
Rosehip is of notable scientific interest due to its rich content of bioactives and its wide-ranging applications in nutrition, cosmetics and pharmaceuticals. The valorization of rosehip by-products, such as pomace, is highly significant for promoting sustainability. This study investigates the development of rosehip-based powders and beverage prototypes derived from both juice and pomace to evaluate the potential use of pomace in instant beverage design and compare it with juice-based formulations.
View Article and Find Full Text PDFMolecules
December 2024
Food Technology Division, University of Almería, 04120 Almeria, Spain.
London rocket () is a wild green consumed globally, yet its phytochemical composition remains underexplored. In this study, we analyzed the leaves of wild plants and those grown in controlled environments (GCE) with varying electrical conductivities (EC) and light spectra. Plants were assessed for growth, phenolic content, vitamin C, antioxidant activity, glucosinolates, and antiproliferative effects against HT-29 human colorectal cancer cells.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!