Role of mTORC1 Signaling in Regulating the Immune Function of Granulocytes in Teleost Fish.

Int J Mol Sci

Key Laboratory of Breeding Biotechnology and Sustainable Aquaculture, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan 430072, China.

Published: September 2023

Granulocytes are crucial innate immune cells that have been extensively studied in teleost fish. Studies in mammals have revealed that mechanistic target of rapamycin complex 1 (mTORC1) signaling acts as a significant immune regulatory hub, influencing granulocyte immune function. To investigate whether mTORC1 signaling also regulates the immune function of granulocytes in teleost fish, we established a model of RAPA inhibition of the mTORC1 signaling pathway using granulocytes from largemouth bass (). Our results demonstrated that inhibition of mTORC1 signaling promoted autophagy and apoptosis of granulocytes while inhibiting cell proliferation. Moreover, inhibition of the mTORC1 signaling pathway enhanced the phagocytosis capacity of granulocytes. Collectively, our findings revealed the evolutionarily conserved role of the mTORC1 signaling pathway in regulating granulocyte responses, thus providing novel insights into the function of granulocytes in teleost fish.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10530975PMC
http://dx.doi.org/10.3390/ijms241813745DOI Listing

Publication Analysis

Top Keywords

mtorc1 signaling
28
teleost fish
16
immune function
12
function granulocytes
12
granulocytes teleost
12
inhibition mtorc1
12
signaling pathway
12
role mtorc1
8
signaling
7
granulocytes
7

Similar Publications

Decapod crustaceans regulate molting through steroid molting hormones, ecdysteroids, synthesized by the molting gland (Y-organ, YO). Molt-inhibiting hormone (MIH), a neuropeptide synthesized and secreted by the eyestalk ganglia, negatively regulates YO ecdysteroidogenesis. MIH signaling is mediated by cyclic nucleotide second messengers.

View Article and Find Full Text PDF

Background: Dynamins are defined as a group of molecules with GTPase activity that play a role in the formation of endocytic vesicles and Golgi apparatus. Among them, DNM3 has gained recognition in oncology for its tumor suppressor role. Based on this, the aim of this study is to investigate the effects of the DNM3 gene in patients diagnosed with pancreatic cancer using bioinformatics databases.

View Article and Find Full Text PDF

Attenuating hyperammonemia preserves protein synthesis and muscle mass via restoration of perturbed metabolic pathways in bile duct-ligated rats.

Metab Brain Dis

January 2025

Hepato-Neuro Laboratory, Centre Hospitalier de l'Université de Montréal (CRCHUM), Université de Montréal, 900, Rue Saint-Denis - Pavillon R, R08.422, Montréal (Québec), H2X 0A9, Canada.

Sarcopenia and hepatic encephalopathy (HE) are complications of chronic liver disease (CLD), which negatively impact clinical outcomes. Hyperammonemia is considered to be the central component in the pathogenesis of HE, however ammonia's toxic effects have also been shown to impinge on extracerebral organs including the muscle. Our aim was to investigate the effect of attenuating hyperammonemia with ornithine phenylacetate (OP) on muscle mass loss and associated molecular mechanisms in rats with CLD.

View Article and Find Full Text PDF

Splice age: mTORC1-mediated RNA splicing in metabolism and ageing.

Trends Cell Biol

January 2025

Centre for Genomic Regulation (CRG), The Barcelona Institute of Science and Technology, Dr Aiguader 88, 08003 Barcelona, Spain; Universitat Pompeu Fabra (UPF), Dr Aiguader 88, 08003, Barcelona, Spain; Institució Catalana de Recerca i Estudis Avançats (ICREA), Passeig Lluis Companys 23, 08010 Barcelona, Spain. Electronic address:

The target of rapamycin complex mTORC1 has key roles in cell growth and metabolism and its inhibition delays ageing. Recent work by Ogawa et al. in Caenorhabditis elegans argues that modulation of pre-mRNA splicing factors and alternative splicing are key mediators of mTORC1 signalling and can enhance longevity.

View Article and Find Full Text PDF

CircMRP4 orchestrates podocytes injury via the miR-499-5p/RRAGB/mTORC1 axis in diabetic kidney disease.

Cell Signal

January 2025

Department of Pharmacy, The First Affiliated Hospital of University of USTC, Division of Life Sciences and Medicine, University of Science and Technology of China (USTC), Hefei 230001, China; Anhui Provincial Key Laboratory of Precision Pharmaceutical Preparations and Clinical Pharmacy, Hefei, Anhui 230001, China. Electronic address:

Diabetic kidney disease (DKD) is a chronic complication of diabetes characterized by kidney damage due to persistent hyperglycemia. A growing number of evidence indicated that circular RNAs (circRNAs) play a crucial role in diabetes and associated complications. However, the function and mechanism of circRNAs in DKD remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!