Evolution of Robustness in Growing Random Networks.

Entropy (Basel)

Theoretical Division, Los Alamos National Laboratory, Los Alamos, NM 87545, USA.

Published: September 2023

Networks are widely used to model the interaction between individual dynamic systems. In many instances, the total number of units and interaction coupling are not fixed in time, and instead constantly evolve. In networks, this means that the number of nodes and edges both change over time. Various properties of coupled dynamic systems, such as their robustness against noise, essentially depend on the structure of the interaction network. Therefore, it is of considerable interest to predict how these properties are affected when the network grows as well as their relationship to the growth mechanism. Here, we focus on the time evolution of a network's Kirchhoff index. We derive closed-form expressions for its variation in various scenarios, including the addition of both edges and nodes. For the latter case, we investigate the evolution where single nodes with one or two edges connecting to existing nodes are added recursively to a network. In both cases, we derive the relations between the properties of the nodes to which the new node connects along with the global evolution of network robustness. In particular, we show how different scalings of the Kirchhoff index can be obtained as a function of the number of nodes. We illustrate and confirm this theory via numerical simulations of randomly growing networks.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528878PMC
http://dx.doi.org/10.3390/e25091340DOI Listing

Publication Analysis

Top Keywords

dynamic systems
8
number nodes
8
nodes edges
8
nodes
6
evolution
4
evolution robustness
4
robustness growing
4
growing random
4
networks
4
random networks
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!