A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Quantum Information Entropy for Another Class of New Proposed Hyperbolic Potentials. | LitMetric

Quantum Information Entropy for Another Class of New Proposed Hyperbolic Potentials.

Entropy (Basel)

Centro de Investigación en Computación, Instituto Politécnico Nacional, UPALM, Mexico City 07738, Mexico.

Published: September 2023

In this work, we investigate the Shannon entropy of four recently proposed hyperbolic potentials through studying position and momentum entropies. Our analysis reveals that the wave functions of the single-well potentials U0,3 exhibit greater localization compared to the double-well potentials U1,2. This difference in localization arises from the depths of the single- and double-well potentials. Specifically, we observe that the position entropy density shows higher localization for the single-well potentials, while their momentum probability density becomes more delocalized. Conversely, the double-well potentials demonstrate the opposite behavior, with position entropy density being less localized and momentum probability density showing increased localization. Notably, our study also involves examining the Bialynicki-Birula and Mycielski (BBM) inequality, where we find that the Shannon entropies still satisfy this inequality for varying depths u¯. An intriguing observation is that the sum of position and momentum entropies increases with the variable u¯ for potentials U1,2,3, while for U0, the sum decreases with u¯. Additionally, the sum of the cases U0 and U3 almost remains constant within the relative value 0.01 as u¯ increases. Our study provides valuable insights into the Shannon entropy behavior for these hyperbolic potentials, shedding light on their localization characteristics and their relation to the potential depths. Finally, we extend our analysis to the Fisher entropy F¯x and find that it increases with the depth u¯ of the potential wells but F¯p decreases with the depth.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10527625PMC
http://dx.doi.org/10.3390/e25091296DOI Listing

Publication Analysis

Top Keywords

hyperbolic potentials
12
double-well potentials
12
potentials
9
proposed hyperbolic
8
shannon entropy
8
position momentum
8
momentum entropies
8
single-well potentials
8
position entropy
8
entropy density
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!