The measurement matrix used influences the performance of image reconstruction in compressed sensing. To enhance the performance of image reconstruction in compressed sensing, two different Gaussian random matrices were orthogonalized via Gram-Schmidt orthogonalization, respectively. Then, one was used as the real part and the other as the imaginary part to construct a complex-valued Gaussian matrix. Furthermore, we sparsified the proposed measurement matrix to reduce the storage space and computation. The experimental results show that the complex-valued Gaussian matrix after orthogonalization has better image reconstruction performance, and the peak signal-to-noise ratio and structural similarity under different compression ratios are better than the real-valued measurement matrix. Moreover, the sparse measurement matrix can effectively reduce the amount of calculation.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10527653 | PMC |
http://dx.doi.org/10.3390/e25091248 | DOI Listing |
Phys Rev Lett
December 2024
University of Science and Technology of China, CAS Key Laboratory of Quantum Information, Hefei 230026, People's Republic of China.
The quantum circuit model is the most widely used theoretical model for quantum computing. Therefore, determining whether two quantum circuits whose internal structures cannot be seen have the same functionality will be a fundamental problem in future quantum industries, which however turns out to be QMA-hard. Here, based on a photonic system we experimentally implement the equivalence checking of two unknown quantum circuits with real unitary matrix representations, where quantum nonlocality plays a key role and allows us to measure an "average-case" distance between the two quantum circuits very efficiently.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Mechanical, Aerospace, and Biomedical Engineering, University of Tennessee;
Cardiovascular disease (CVD) is the leading cause of death in the United States. Damage in the cardiovascular system can be due to environmental exposure, trauma, drug toxicity, or numerous other factors. As a result, cardiac tissue and vasculature undergo structural changes and display diminished function.
View Article and Find Full Text PDFJ Vis Exp
January 2025
Genetics and Aging Research Unit, MassGeneral Institute for Neurodegenerative Disease, Henry and Allison McCance Center for Brain Health, Department of Neurology, Massachusetts General Hospital, Harvard Medical School;
A method to quantitate the stabilization of Mitochondria-Associated endoplasmic reticulum Membranes (MAMs) in a 3-dimensional (3D) neural model of Alzheimer's disease (AD) is presented here. To begin, fresh human neuro progenitor ReN cells expressing β-amyloid precursor protein (APP) containing familial Alzheimer's disease (FAD) or naïve ReN cells are grown in thin (1:100) Matrigel-coated tissue culture plates. After the cells reach confluency, these are electroporated with expression plasmids encoding red fluorescence protein (RFP)-conjugated mitochondria-binding sequence of AKAP1(34-63) (Mito-RFP) that detects mitochondria or constitutive MAM stabilizers MAM 1X or MAM 9X that stabilize tight (6 nm ± 1 nm gap width) or loose (24 nm ± 3 nm gap width) MAMs, respectively.
View Article and Find Full Text PDFJ Cancer Res Clin Oncol
January 2025
Department of Pathology, Theodor Bilharz Research Institute, Giza, 12411, Egypt.
Introduction: Pancreatic ductal adenocarcinoma (PDAC) is associated with poor prognosis. The roles of the transcription factor special AT-rich binding protein-2 (SATB2) and β-catenin in PDAC have been a subject of controversy. We aimed to assess the diagnostic and prognostic impact of SATB2 and β-catenin in PDAC.
View Article and Find Full Text PDFNucleic Acids Res
January 2025
Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697-3958, United States.
Growth in the development of engineered polymerases for synthetic biology has led to renewed interest in assays that can measure the fidelity of polymerases that are capable of synthesizing artificial genetic polymers (XNAs). Conventional approaches require purifying the XNA intermediate of a replication cycle (DNA → XNA → DNA) by denaturing polyacrylamide gel electrophoresis, which is a slow, costly, and inefficient process that requires a large-scale transcription reaction and careful extraction of the XNA strand from the gel slice. In an effort to streamline the assay, we developed a purification-free approach in which the XNA transcription and reverse transcription steps occur inside the matrix of a hydrogel-coated magnetic particle.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!