Petroleum-derived waxes are used in the food industry as additives to provide texture and as coatings for foodstuffs such as fruits and cheeses. Therefore, food waxes are subject to strict quality controls to comply with regulations. In this research, a combination of visible and near-infrared (Vis-NIR) spectroscopy with machine learning was employed to effectively characterize two commonly marketed petroleum waxes of food interest: macrocrystalline and microcrystalline. The present study employed unsupervised machine learning algorithms like hierarchical cluster analysis (HCA) and principal component analysis (PCA) to differentiate the wax samples based on their chemical composition. Furthermore, nonparametric supervised machine learning algorithms, such as support vector machines (SVMs) and random forest (RF), were applied to the spectroscopic data for precise classification. Results from the HCA and PCA demonstrated a clear trend of grouping the wax samples according to their chemical composition. In combination with five-fold cross-validation (CV), the SVM models accurately classified all samples as either macrocrystalline or microcrystalline wax during the test phase. Similar high-performance outcomes were observed with RF models along with five-fold CV, enabling the identification of specific wavelengths that facilitate discrimination between the wax types, which also made it possible to select the wavelengths that allow discrimination of the samples to build the characteristic of each type of petroleum wax. This research underscores the effectiveness of the proposed analytical method in providing fast, environmentally friendly, and cost-effective quality control for waxes. The approach offers a promising alternative to existing techniques, making it a viable option for automated quality assessment of waxes in food industrial applications.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10528079 | PMC |
http://dx.doi.org/10.3390/foods12183362 | DOI Listing |
J Chem Inf Model
January 2025
Institute of Chemistry, Technische Universität Berlin, Straße des 17. Juni 135, Berlin 10623, Germany.
Machine learning (ML) is a powerful tool for the automated data analysis of molecular dynamics (MD) simulations. Recent studies showed that ML models can be used to identify protein-ligand unbinding pathways and understand the underlying mechanism. To expedite the examination of MD simulations, we constructed PathInHydro, a set of supervised ML models capable of automatically assigning unbinding pathways for the dissociation of gas molecules from [NiFe] hydrogenases, using the unbinding trajectories of CO and H from [NiFe] hydrogenase as a training set.
View Article and Find Full Text PDFInt J Numer Method Biomed Eng
January 2025
College of Chemistry and Life Science, Beijing University of Technology, Beijing, China.
The accurate non-invasive detection and estimation of central aortic pressure waveforms (CAPW) are crucial for reliable treatments of cardiovascular system diseases. But the accuracy and practicality of current estimation methods need to be improved. Our study combines a meta-learning neural network and a physics-driven method to accurately estimate CAPW based on personalized physiological indicators.
View Article and Find Full Text PDFJ Osteopath Med
January 2025
McAllen Department of Trauma, South Texas Health System, McAllen, TX, USA.
Context: The injuries caused by falls-from-height (FFH) are a significant public health concern. FFH is one of the most common causes of polytrauma. The injuries persist to be significant adverse events and a challenge regarding injury severity assessment to identify patients at high risk upon admission.
View Article and Find Full Text PDFBrief Bioinform
November 2024
Center for Genomics and Biotechnology, Fujian Provincial Key Laboratory of Haixia Applied Plant Systems Biology, Haixia Institute of Science and Technology, Fujian Agriculture and Forestry University, No. 15 Shangxiadian Road, Cangshan District, Fuzhou 350002, China.
Spatial transcriptomics (ST) technologies enable dissecting the tissue architecture in spatial context. To perceive the global contextual information of gene expression patterns in tissue, the spatial dependence of cells must be fully considered by integrating both local and non-local features by means of spatial-context-aware. However, the current ST integration algorithm ignores for ST dropouts, which impedes the spatial-aware of ST features, resulting in challenges in the accuracy and robustness of microenvironmental heterogeneity detecting, spatial domain clustering, and batch-effects correction.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Centre for Robotics and Automation, Department of Biomedical Engineering, City University of Hong Kong, Hong Kong 999077, China.
Liquid metals are highly conductive like metallic materials and have excellent deformability due to their liquid state, making them rather promising for flexible and stretchable wearable sensors. However, patterning liquid metals on soft substrates has been a challenge due to high surface tension. In this paper, a new method is proposed to overcome the difficulties in fabricating liquid-state strain sensors.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!