A Holistic Analysis of Food Security Situation of Households Engaged in Land Certification and Sustainable Land Management Programs: South Wello, Ethiopia.

Foods

Center for Environment and Sustainable Development, College of Development Studies, Addis Ababa University, Addis Ababa P.O. Box 1176, Ethiopia.

Published: September 2023

Land degradation, food and tenure insecurity are significant problems in the northern highlands of Ethiopia, particularly in the region known as the country's famine corridor. Addressing these twine issues in the region has become a focal point for both local and international organizations, underscoring the significance of preventive measures. Since 2000, the Government of Ethiopia (GoE) has been implementing sustainable land management and certification programs. This study aims on households involved in these programs, specifically in Dessie Zuria and Kutaber Woredas, South Wello Zone (SWZ). The primary objectives of the research were to assess households' current food security status, identify factors influencing their food security, and classify coping and survival strategies employed by households during food shortages. Primary and secondary sources have been used to collect both qualitative and quantitative data. Quantitative data were collected from surveyed households and analyzed USING SPSS software version 26, whereas qualitative data were transcribed, grouped, and interpreted in line with the aim of the research. Three food security models, namely the Household Food Balance Model, Months of Adequate Household Food Provisioning, and Household Dietary Diversity Score, were employed to evaluate food security. Consequently, a significant percentage of the surveyed households, amounting to 88.3%, 35.6%, and 93.8%, were found to experience food insecurity according to the respective models. Rainfall shortages and variability, crop pests and diseases, shrinking farm plots, and land degradation are among the identified food security determinants. During dearth periods, households deploy a variety of coping and survival strategies. To mitigate food insecurity stemming from both natural and socio-economic factors, the research suggests several recommendations. These include advocating for tenure policy reforms by the GoE, and the local governments should promote the adoption of efficient land management practices, instituting a land certification system based on cadasters, encouraging family planning, boosting investments in education and literacy, raising awareness and providing training in climate-smart agriculture techniques, educating communities on optimal grain utilization, saving, trade, and storage methods, facilitating opportunities for income generation through off-farm and non-farm activities, and offering support for crop and livestock diversification.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10527708PMC
http://dx.doi.org/10.3390/foods12183341DOI Listing

Publication Analysis

Top Keywords

food security
24
food
12
land management
12
land certification
8
sustainable land
8
south wello
8
land degradation
8
coping survival
8
survival strategies
8
quantitative data
8

Similar Publications

Hybrid strains of enterotoxigenic/Shiga toxin-producing , United Kingdom, 2014-2023.

J Med Microbiol

January 2025

NIHR Health Protection Research Unit in Gastrointestinal Infections, University of Liverpool, Liverpool, UK.

Diarrhoeagenic (DEC) pathotypes are defined by genes located on mobile genetic elements, and more than one definitive pathogenicity gene may be present in the same strain. In August 2022, UK Health Security Agency (UKHSA) surveillance systems detected an outbreak of hybrid Shiga toxin-producing /enterotoxigenic (STEC-ETEC) serotype O101:H33 harbouring both Shiga toxin () and heat-stable toxin (). These hybrid strains of DEC are a public health concern, as they are often associated with enhanced pathogenicity.

View Article and Find Full Text PDF

In July 2022, a genetically linked and geographically dispersed cluster of 12 cases of Shiga toxin-producing (STEC) O103:H2 was detected by the UK Health Security Agency using whole genome sequencing. Review of food history questionnaires identified cheese (particularly an unpasteurized brie-style cheese) and mixed salad leaves as potential vehicles. A case-control study was conducted to investigate exposure to these products.

View Article and Find Full Text PDF

Innovative Infrared Spectroscopic Technologies for the Prediction of Deoxynivalenol in Wheat.

ACS Food Sci Technol

January 2025

Institute of Analytical and Bioanalytical Chemistry, Ulm University, Albert-Einstein-Allee 11, Ulm 89075, Germany.

Mycotoxin contamination in cereals is a global food safety concern. One of the most common mycotoxins in grains is deoxynivalenol (DON), a secondary metabolite produced by the fungi and . Exposure to DON can lead to adverse health effects in both humans and animals including vomiting, dizziness, and fever.

View Article and Find Full Text PDF

Transcriptional engineering for value enhancement of oilseed crops: a forward perspective.

Front Genome Ed

January 2025

Biological and Life Sciences Division, School of Arts and Sciences, Ahmedabad University, Ahmedabad, Gujarat, India.

Plant-derived oils provide 20%-35% of dietary calories and are a primary source of essential omega-6 (linoleic) and omega-3 (α-linolenic) fatty acids. While traditional breeding has significantly increased yields in key oilseed crops like soybean, sunflower, canola, peanut, and cottonseed, overall gains have plateaued over the past few decades. Oilseed crops also experience substantial yield losses in both prime and marginal agricultural areas due to biotic and abiotic stresses and shifting agro-climates.

View Article and Find Full Text PDF

Cell-Based Meat Safety and Regulatory Approaches: A Comprehensive Review.

Food Sci Anim Resour

January 2025

Department of Food Science and Biotechnology, College of Life Science, Sejong University, Seoul 05006, Korea.

Cell-based meat (CBM) technology is a highly promising alternative to traditional animal agriculture, with considerable advantages in terms of sustainability, animal welfare, and food security. Nonetheless, CBM's successful commercialization is dependent on efficiently dealing with several critical concerns, including ensuring biological, chemical, and nutritional safety as well as navigating the global regulatory framework. To ensure CBM's biological safety, detecting and mitigating any potential hazards introduced during the manufacturing process is crucial.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!