A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Omega-3 Fatty Acids Attenuate Renal Fibrosis via AMPK-Mediated Autophagy Flux Activation. | LitMetric

The unilateral ureteral obstruction (UUO) injury model is well-known to mimic human chronic kidney disease, promoting the rapid onset and development of kidney injury. ω3-poly unsaturated fatty acids (PUFAs) have been observed to protect against tissue injury in many disease models. In this study, we assessed the efficacy of ω3-PUFAs in attenuating UUO injury and investigated their mechanism of action. The immortalized human proximal tubular cells human kidney-2 (HK2) were incubated for 72 h with docosahexaenoic acid (DHA) or eicosapentaenoic acid (EPA) in various concentrations, in the presence or absence of transforming growth factor (TGF)-β. DHA/EPA reduced the epithelial-mesenchymal transition in the TGF-β-treated HK2 cells by enhancing autophagy flux and adenosine monophosphate-activated protein kinase (AMPK) phosphorylation. C57BL/6 mice were divided into four groups and treated as follows: sham (no treatment, = 5), sham + ω3-PUFAs ( = 5), UUO ( = 10), and UUO + ω3-PUFAs ( = 10). Their kidneys and blood were harvested on the seventh day following UUO injury. The kidneys of the ω3-PUFAs-treated UUO mice showed less oxidative stress, inflammation, and fibrosis compared to those of the untreated UUO mice. Greater autophagic flux, higher amounts of microtubule-associated protein 1A/1B-light chain 3 (LC3)-II, Beclin-1, and Atg7, lower amounts of p62, and higher levels of cathepsin D and ATP6E were observed in the kidneys of the omega-3-treated UUO mice compared to those of the control UUO mice. In conclusion, ω3-PUFAs enhanced autophagic activation, leading to a renoprotective response against chronic kidney injury.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525956PMC
http://dx.doi.org/10.3390/biomedicines11092553DOI Listing

Publication Analysis

Top Keywords

uuo mice
16
uuo injury
12
uuo
9
fatty acids
8
autophagy flux
8
chronic kidney
8
kidney injury
8
injury
6
mice
5
omega-3 fatty
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!