Exopolysaccharides (EPS) are exogenous microbial metabolites generated predominantly during the development of bacteria. They have several biological potentials, including antibacterial, antioxidant, and anticancer actions. Polysaccharide-coated nanoparticles have high biological activity and are used in treatments and diagnostics. In this research, selenium nanoparticles (SeNPs) are synthesized and conjugated with bacterial ( sp. MKUST-01) exopolysaccharide (EPS). Initially, the creation of SeNPs conjugates was verified through UV-Vis spectral examination, which exhibited a prominent peak at 264 nm. Additionally, X-ray diffraction (XRD) analysis further substantiated the existence of crystalline Se, as evidenced by a robust reflection at 29.78°. Another reflection observed at 23.76° indicated the presence of carbon originating from the EPS. Fourier transform infrared spectroscopy (FT-IR) analysis of the EPS capped with SeNPs displayed characteristic peaks at 3425 cm, 2926 cm, 1639 cm, and 1411 cm, corresponding to the presence of O-H, C-H, C=O, and COO-groups. The SeNPs themselves were found to possess elongated rod-shaped structures with lengths ranging from 250 to 550 nm and a diameter of less than 70 nm, as confirmed using scanning electron microscopy and particle size analysis. In contrast to the SeNPs, the SeNPs-EPS conjugates showed no hemolytic activity. The overall antioxidant activity of SeNPs-EPS conjugates outperformed 20% higher than SeNPs and EPS. Additionally, experimental observations involving gnotobiotic experiments were also recorded, such as the supplementation of EPS and SeNPs-EPS conjugates corresponding to enhanced growth and increased survival rates compared to fed with SeNPs and a microalgal diet.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525696 | PMC |
http://dx.doi.org/10.3390/biomedicines11092520 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!