With the availability of MRI linacs, online adaptive intensity modulated radiotherapy (IMRT) has become a treatment option for liver cancer patients, often combined with hypofractionation. Intensity modulated proton therapy (IMPT) has the potential to reduce the dose to healthy tissue, but it is particularly sensitive to changes in the beam path and might therefore benefit from online adaptation. This study compares the normal tissue complication probabilities (NTCPs) for liver and duodenal toxicity for adaptive and non-adaptive IMRT and IMPT treatments of liver cancer patients. Adaptive and non-adaptive IMRT and IMPT plans were optimized to 50 Gy (RBE = 1.1 for IMPT) in five fractions for 10 liver cancer patients, using the original MRI linac images and physician-drawn structures. Three liver NTCP models were used to predict radiation-induced liver disease, an increase in albumin-bilirubin level, and a Child-Pugh score increase of more than 2. Additionally, three duodenal NTCP models were used to predict gastric bleeding, gastrointestinal (GI) toxicity with grades >3, and duodenal toxicity grades 2-4. NTCPs were calculated for adaptive and non-adaptive IMRT and IMPT treatments. In general, IMRT showed higher NTCP values than IMPT and the differences were often significant. However, the differences between adaptive and non-adaptive treatment schemes were not significant, indicating that the NTCP benefit of adaptive treatment regimens is expected to be smaller than the expected difference between IMRT and IMPT.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526201PMC
http://dx.doi.org/10.3390/cancers15184592DOI Listing

Publication Analysis

Top Keywords

liver cancer
16
cancer patients
16
adaptive non-adaptive
16
imrt impt
16
non-adaptive imrt
12
patients adaptive
8
intensity modulated
8
duodenal toxicity
8
impt treatments
8
ntcp models
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!