HER2-positive breast cancer accounts for 15-20% of all breast cancer cases. This subtype is characterized by an aggressive behavior and poor prognosis. Anti-HER2 therapies have considerably improved the natural course of the disease. Despite this, relapse still occurs in around 20% of patients due to primary or acquired treatment resistance, and metastasis remains an incurable disease. This article reviews the main mechanisms underlying resistance to anti-HER2 treatments, focusing on newer HER2-targeted therapies. The progress in anti-HER2 drugs includes the development of novel antibody-drug conjugates with improvements in the conjugation process and novel linkers and payloads. Moreover, trastuzumab deruxtecan has enhanced the efficacy of trastuzumab emtansine, and the new drug trastuzumab duocarmazine is currently undergoing clinical trials to assess its effect. The combination of anti-HER2 agents with other drugs is also being evaluated. The addition of immunotherapy checkpoint inhibitors shows some benefit in a subset of patients, indicating the need for useful biomarkers to properly stratify patients. Besides, CDK4/6 and tyrosine kinase inhibitors are also included in the design of new treatment strategies. Lapitinib, neratinib and tucatinib have been approved for HER2-positive metastasis patients, however clinical trials are currently ongoing to optimize combined strategies, to reduce toxicity, and to better define the useful setting. Clinical research should be strengthened along with the discovery and validation of new biomarkers, as well as a deeper understanding of drug resistance and action mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10527351PMC
http://dx.doi.org/10.3390/cancers15184522DOI Listing

Publication Analysis

Top Keywords

breast cancer
12
treatment strategies
8
clinical trials
8
patients
5
clinical
4
clinical impact
4
impact treatment
4
strategies her2-positive
4
her2-positive metastatic
4
metastatic breast
4

Similar Publications

The aim of this study was to comparatively determine the frequency of breast cancer-related lymphedema (BCRL) by using prospective monitoring with perometer and circumferential measurements in a group of patients who underwent breast cancer surgery. We also aimed to evaluate the relationship between volume changes and functional status and quality of life (QoL) in patients with breast cancer-related subclinical lymphedema. Patients who had unilateral breast cancer surgery for breast were assessed with circumferential and perometer, respectively, for volumes at baseline, 3rd-month, 6th-month, 9th-month, and 12th-month by the same physiotherapist.

View Article and Find Full Text PDF

Photoresponsive drug delivery systems have great potential for improved cancer therapy. However, most of the currently available drug-delivery nanosystems are relatively large and require light excitation with low tissue penetration. Here, we designed a near infrared responsive drug delivery system by loading [Ru(terpyridine)(dipyridophenazine)(HO)] (Ru(tpy)DPPZ) in azobenzene-modified mesoporous silica coated NaGdF:Nd/Yb/Tm upconversion nanoparticles (azo-mSiO-UCNPs).

View Article and Find Full Text PDF

Association of radiation-induced normal tissue toxicity with a high genetic risk for rheumatoid arthritis.

J Natl Cancer Inst

January 2025

Translational Radiobiology Group, Division of Cancer Sciences, University of Manchester, The Christie NHS Foundation Trust, Manchester, United Kingdom.

Purpose: Overlapping genes are involved with rheumatoid arthritis (RA) and DNA repair pathways. Therefore, we hypothesised that patients with a high polygenic risk score (PRS) for RA will have an increased risk of radiotherapy (RT) toxicity given the involvement of DNA repair.

Methods: Primary analysis was performed on 1494 prostate cancer, 483 lung cancer and 1820 breast cancer patients assessed for development of RT toxicity in the REQUITE study.

View Article and Find Full Text PDF

An In Silico Approach to Uncover Selective JAK1 Inhibitors for Breast Cancer from Life Chemicals Database.

Appl Biochem Biotechnol

January 2025

Computational Biology Lab, Department of Genetic Engineering, School of Bioengineering, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur, 603203, Tamil Nadu, India.

JAK1, a key regulator of multiple oncogenic pathways, is a sought-out target, and its expression in immune cells and tumour-infiltrating lymphocytes (TILs) is associated with a favorable prognosis in breast cancer. JAK1 activates IL-6 via ERBB2 receptor tyrosine kinase signalling and promotes metastatic cancer and STAT3 activation in breast cancer cells. Hence, targeting JAK1 in breast cancer is being explored as a potential therapeutic strategy.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!