A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

A New Generative Model for Textual Descriptions of Medical Images Using Transformers Enhanced with Convolutional Neural Networks. | LitMetric

The automatic generation of descriptions for medical images has sparked increasing interest in the healthcare field due to its potential to assist professionals in the interpretation and analysis of clinical exams. This study explores the development and evaluation of a generalist generative model for medical images. Gaps were identified in the literature, such as the lack of studies that explore the performance of specific models for medical description generation and the need for objective evaluation of the quality of generated descriptions. Additionally, there is a lack of model generalization to different image modalities and medical conditions. To address these issues, a methodological strategy was adopted, combining natural language processing and features extraction from medical images and feeding them into a generative model based on neural networks. The goal was to achieve model generalization across various image modalities and medical conditions. The results showed promising outcomes in the generation of descriptions, with an accuracy of 0.7628 and a BLEU-1 score of 0.5387. However, the quality of the generated descriptions may still be limited, exhibiting semantic errors or lacking relevant details. These limitations could be attributed to the availability and representativeness of the data, as well as the techniques used.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525548PMC
http://dx.doi.org/10.3390/bioengineering10091098DOI Listing

Publication Analysis

Top Keywords

medical images
16
generative model
12
descriptions medical
8
neural networks
8
generation descriptions
8
quality generated
8
generated descriptions
8
model generalization
8
generalization image
8
image modalities
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!