Human embryonic stem cells and induced pluripotent stem cells (hPSC) have an unprecedented opportunity to revolutionize the fields of developmental biology as well as tissue engineering and regenerative medicine. However, their applications have been significantly limited by the lack of chemically defined and xeno-free culture conditions. The demand for the high-quality and scaled-up production of cells for use in both research and clinical studies underscores the need to develop tools that will simplify the in vitro culture process while reducing the variables. Here, we describe a systematic study to identify the optimal conditions for the initial cell attachment of hPSC to tissue culture dishes grafted with polymers of N-(3-Sulfopropyl)-N-Methacryloxyethyl-N, N-Dimethylammoniun Betaine (PMEDSAH) in combination with chemically defined and xeno-free culture media. After testing multiple supplements and chemicals, we identified that pre-conditioning of PMEDSAH grafted plates with 10% human serum (HS) supported the initial cell attachment, which allowed for the long-term culture and maintenance of hPSC compared to cells cultured on Matrigel-coated plates. Using this culture condition, a 2.1-fold increase in the expansion of hPSC was observed without chromosomal abnormalities. Furthermore, this culture condition supported a higher reprogramming efficiency (0.37% vs. 0.22%; < 0.0068) of somatic cells into induced pluripotent stem cells compared to the non-defined culture conditions. This defined and xeno-free hPSC culture condition may be used in obtaining the large populations of hPSC and patient-derived iPSC required for many applications in regenerative and translational medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525589PMC
http://dx.doi.org/10.3390/bioengineering10090999DOI Listing

Publication Analysis

Top Keywords

stem cells
16
defined xeno-free
16
pluripotent stem
12
xeno-free culture
12
culture conditions
12
culture condition
12
culture
10
cells induced
8
induced pluripotent
8
chemically defined
8

Similar Publications

Introduction: Iron overload (IOL) accumulates in myelodysplastic syndromes (MDS) from expanded erythropoiesis and transfusions. Somatic mutations (SM) are frequent in MDS and stratify patient risk. MDS treatments reversing or limiting transfusion dependence are limited.

View Article and Find Full Text PDF

Allogeneic hematopoietic stem cell transplantation (allo-HSCT) is a second-line treatment with curative potential for leukemia patients. However, the prognosis of allo-HSCT patients with disease relapse or graft-versus-host disease (GvHD) is poor. CD4 or CD8 conventional T (Tconv) cells are critically involved in mediating anti-leukemic immune responses to prevent relapse and detrimental GvHD.

View Article and Find Full Text PDF

Airway basal stem cell therapy for lung diseases: an emerging regenerative medicine strategy.

Stem Cell Res Ther

January 2025

Department of Pulmonary and Critical Care Medicine, Sichuan Provincial People's Hospital, University of Electronic Science and Technology of China, Chengdu, China.

Chronic pulmonary diseases pose a prominent health threat globally owing to their intricate pathogenesis and lack of effective reversal therapies. Nowadays, lung transplantation stands out as a feasible treatment option for patients with end-stage lung disease. Unfortunately, the use of this this option is limited by donor organ shortage and severe immunological rejection reactions.

View Article and Find Full Text PDF

CXCR4 promotes tumor stemness maintenance and CDK4/6 inhibitors resistance in ER-positive breast cancer.

Breast Cancer Res

January 2025

Guangdong Provincial Key Laboratory of Malignant Tumor Epigenetics and Gene Regulation, Sun Yat-Sen Memorial Hospital, Sun Yat-Sen University, Guangzhou, 510120, China.

Background: CDK4/6 inhibitors have significantly improved the survival of patients with HR-positive/HER2-negative breast cancer, becoming a first-line treatment option. However, the development of resistance to these inhibitors is inevitable. To address this challenge, novel strategies are required to overcome resistance, necessitating a deeper understanding of its mechanisms.

View Article and Find Full Text PDF

Central Nervous System Response Against Ionizing Radiation Exposure: Cellular, Biochemical, and Molecular Perspectives.

Mol Neurobiol

January 2025

Radiation Biotechnology Department, Institute of Nuclear Medicine and Allied Sciences (INMAS), Defence Research and Development Organization (DRDO), Brig. S.K. Mazumdar Road, Timarpur, Delhi, 110054, India.

Gamma radiation is known to induce several detrimental effects on the nervous system. The hippocampus region, specifically the dentate gyrus (DG) and subventricular zone (SVZ), have been identified as a radiation-sensitive neurogenic niche. Radiation alters the endogenous redox status of neural stem cells (NSCs) and other proliferative cells, especially in the hippocampus region, leading to oxidative stress, neuroinflammation, and cell death.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!