Colorants and Antioxidants Deriving from Methylglyoxal and Heterocyclic Maillard Reaction Intermediates.

Antioxidants (Basel)

Department of Food Chemistry and Analysis, Institute of Food Technology and Food Chemistry, Technische Universität Berlin, Gustav-Meyer-Allee 25, 13355 Berlin, Germany.

Published: September 2023

The Maillard reaction is well known for producing antioxidant compounds alongside colored substances. Low-molecular-weight antioxidant intermediates such as maltol (MAL) or norfuraneol (NF) are well described, but it is still unclear which of these Maillard intermediates are the precursors of antioxidant and colored melanoidins-the so-called late stage Maillard reaction products. This study aimed to provide novel insights into the correlation between browning potential and antioxidant properties of reaction products formed during the heat treatment of prominent Maillard reaction intermediates. It was achieved by the incubation of binary reaction systems composed of methylglyoxal (MGO) or NF in combination with furfural (FF), MAL, and pyrrole-2-carbaldehyde (PA) at pH 5 and 130 °C for up to 120 min. Overall, it could be shown that the formation of colored products in the binary NF reaction systems was more efficient compared to those of MGO. This was reflected in an increased browning intensity of up to 400% and a lower conversion rate of NF compared to MGO. The colorants formed by NF and FF or PA (~0.34 kDa and 10-100 kDa) were also found to exhibit higher molecular weights compared to the analogue products formed in the MGO incubations (<0.34 kDa and 10-100 kDa). The incorporation of NF into these heterogenous products with FF and PA resulted in the preservation of the initial antioxidant properties of NF ( < 0.05), whereas no antioxidant products were formed after the incubation of MGO.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525816PMC
http://dx.doi.org/10.3390/antiox12091788DOI Listing

Publication Analysis

Top Keywords

maillard reaction
16
reaction intermediates
8
reaction products
8
products formed
8
binary reaction
8
reaction systems
8
compared mgo
8
reaction
7
maillard
5
colorants antioxidants
4

Similar Publications

Home-made vs industry-made: Nutrient composition and content of potentially harmful compounds of different food products.

Curr Res Food Sci

December 2024

Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.

Many consumers perceive industrially processed foods as lower in quality and potentially harmful to health, with concerns about poor nutrition, additives, and harmful compounds formed during processing. Epidemiological studies have highlighted risks associated with "ultra-processed foods," but empirical comparisons between industrial (IND) and home-made (HM) foods are scarce. This study aimed to compare nutritional values and harmful compounds in IND vs.

View Article and Find Full Text PDF

Insights into potential flavor-active peptides and taste-related compounds in Longjing teas: A comparative study of 'Longjing 43' and 'Qunti' cultivars.

Food Chem

January 2025

Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China. Electronic address:

Article Synopsis
  • Longjing tea is notable for its rich umami flavor, but the complex chemical interactions that contribute to this taste are not fully understood.
  • The study analyzed taste components in two types of Longjing tea: 'Longjing 43' (LJ43) and 'Qunti' (QT), discovering 865 water-soluble peptides in QT and 497 in LJ43, with 44 identified as contributing to umami flavor.
  • Findings showed that LJ43 had higher levels of theanine and glutamine than QT, while both varieties contained similar levels of flavan-3-ols, indicating that different chemical compounds and their interactions play a critical role in defining the flavor profile of Longjing tea.
View Article and Find Full Text PDF

Effects of Maillard Reaction Durations on the Physicochemical and Emulsifying Properties of Chickpea Protein Isolate.

Foods

January 2025

Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.

This study investigated the physicochemical and emulsifying properties of chickpea protein isolate (CPI)-citrus pectin (CP) conjugates formed via the Maillard reaction across varying reaction durations. CPI and CP were conjugated under controlled dry-heating conditions, and the resulting conjugates were characterized by measuring their particle size, zeta potential, solubility, thermal stability, surface hydrophobicity, and emulsifying properties. The results showed that as reaction duration increased, the particle size and zeta potential of the CPI-CP conjugates increased significantly, reaching a maximum particle size of 1311.

View Article and Find Full Text PDF

The development of plant-based meat substitutes is imperative for reducing animal fat intake and promoting dietary diversification. However, the flavor profiles of these products frequently fall short of consumer expectations. This study sought to optimize the production process of meat flavorings for plant-based products using the Taguchi method.

View Article and Find Full Text PDF

The present study was undertaken to investigate the impact of curdlan and buttermilk addition on the physicochemical and sensory attributes of processed cheeses (PCs), thereby elucidating their potential utility in culinary applications. Comprehensive analyses were conducted to assess the chemical composition, textural and rheological properties, microstructural features, and sensory characteristics of PCs. The findings indicate that the addition of curdlan notably decreased both the hardness and stickiness of cheeses but also significantly reduced their meltability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!