The Maillard reaction is well known for producing antioxidant compounds alongside colored substances. Low-molecular-weight antioxidant intermediates such as maltol (MAL) or norfuraneol (NF) are well described, but it is still unclear which of these Maillard intermediates are the precursors of antioxidant and colored melanoidins-the so-called late stage Maillard reaction products. This study aimed to provide novel insights into the correlation between browning potential and antioxidant properties of reaction products formed during the heat treatment of prominent Maillard reaction intermediates. It was achieved by the incubation of binary reaction systems composed of methylglyoxal (MGO) or NF in combination with furfural (FF), MAL, and pyrrole-2-carbaldehyde (PA) at pH 5 and 130 °C for up to 120 min. Overall, it could be shown that the formation of colored products in the binary NF reaction systems was more efficient compared to those of MGO. This was reflected in an increased browning intensity of up to 400% and a lower conversion rate of NF compared to MGO. The colorants formed by NF and FF or PA (~0.34 kDa and 10-100 kDa) were also found to exhibit higher molecular weights compared to the analogue products formed in the MGO incubations (<0.34 kDa and 10-100 kDa). The incorporation of NF into these heterogenous products with FF and PA resulted in the preservation of the initial antioxidant properties of NF ( < 0.05), whereas no antioxidant products were formed after the incubation of MGO.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525816 | PMC |
http://dx.doi.org/10.3390/antiox12091788 | DOI Listing |
Curr Res Food Sci
December 2024
Food Quality and Design Group, Department of Agrotechnology and Food Sciences, Wageningen University, P.O. Box 17, 6700 AA, Wageningen, the Netherlands.
Many consumers perceive industrially processed foods as lower in quality and potentially harmful to health, with concerns about poor nutrition, additives, and harmful compounds formed during processing. Epidemiological studies have highlighted risks associated with "ultra-processed foods," but empirical comparisons between industrial (IND) and home-made (HM) foods are scarce. This study aimed to compare nutritional values and harmful compounds in IND vs.
View Article and Find Full Text PDFFood Chem
January 2025
Key Laboratory of Tea Biology and Resource Utilization of Ministry of Agriculture, Tea Research Institute, Chinese Academy of Agricultural Sciences, Hangzhou 310008, China. Electronic address:
Foods
January 2025
Department of Marine Biopharmacology, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China.
This study investigated the physicochemical and emulsifying properties of chickpea protein isolate (CPI)-citrus pectin (CP) conjugates formed via the Maillard reaction across varying reaction durations. CPI and CP were conjugated under controlled dry-heating conditions, and the resulting conjugates were characterized by measuring their particle size, zeta potential, solubility, thermal stability, surface hydrophobicity, and emulsifying properties. The results showed that as reaction duration increased, the particle size and zeta potential of the CPI-CP conjugates increased significantly, reaching a maximum particle size of 1311.
View Article and Find Full Text PDFFoods
January 2025
Laboratory of Food Biotechnology and Foods for Special Dietary Uses, Federal State Budgetary Scientific Institution Federal Research Center of Nutrition, Biotechnology and Food Safety, 109240 Moscow, Russia.
The development of plant-based meat substitutes is imperative for reducing animal fat intake and promoting dietary diversification. However, the flavor profiles of these products frequently fall short of consumer expectations. This study sought to optimize the production process of meat flavorings for plant-based products using the Taguchi method.
View Article and Find Full Text PDFMolecules
December 2024
Department of Dairy Science and Quality Management, Faculty of Food Science, University of Warmia and Mazury, Oczapowskiego 7, 10-719 Olsztyn, Poland.
The present study was undertaken to investigate the impact of curdlan and buttermilk addition on the physicochemical and sensory attributes of processed cheeses (PCs), thereby elucidating their potential utility in culinary applications. Comprehensive analyses were conducted to assess the chemical composition, textural and rheological properties, microstructural features, and sensory characteristics of PCs. The findings indicate that the addition of curdlan notably decreased both the hardness and stickiness of cheeses but also significantly reduced their meltability.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!