This research comprises experiments with a deep learning framework for fully automating the skull stripping from brain magnetic resonance (MR) images. Conventional techniques for segmentation have progressed to the extent of Convolutional Neural Networks (CNN). We proposed and experimented with a contemporary variant of the deep learning framework based on mask region convolutional neural network (Mask-RCNN) for all anatomical orientations of brain MR images. We trained the system from scratch to build a model for classification, detection, and segmentation. It is validated by images taken from three different datasets: BrainWeb; NAMIC, and a local hospital. We opted for purposive sampling to select 2000 images of T1 modality from data volumes followed by a multi-stage random sampling technique to segregate the dataset into three batches for training (75%), validation (15%), and testing (10%) respectively. We utilized a robust backbone architecture, namely ResNet-101 and Functional Pyramid Network (FPN), to achieve optimal performance with higher accuracy. We subjected the same data to two traditional methods, namely Brain Extraction Tools (BET) and Brain Surface Extraction (BSE), to compare their performance results. Our proposed method had higher mean average precision (mAP) = 93% and content validity index (CVI) = 0.95%, which were better than comparable methods. We contributed by training Mask-RCNN from scratch for generating reusable learning weights known as transfer learning. We contributed to methodological novelty by applying a pragmatic research lens, and used a mixed method triangulation technique to validate results on all anatomical modalities of brain MR images. Our proposed method improved the accuracy and precision of skull stripping by fully automating it and reducing its processing time and operational cost and reliance on technicians. This research study has also provided grounds for extending the work to the scale of explainable artificial intelligence (XAI).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526767 | PMC |
http://dx.doi.org/10.3390/brainsci13091255 | DOI Listing |
Imaging Neurosci (Camb)
November 2024
Massachusetts General Hospital, Harvard Medical School, Boston, MA, United States.
Synthetic data have emerged as an attractive option for developing machine-learning methods in human neuroimaging, particularly in magnetic resonance imaging (MRI)-a modality where image contrast depends enormously on acquisition hardware and parameters. This retrospective paper reviews a family of recently proposed methods, based on synthetic data, for generalizable machine learning in brain MRI analysis. Central to this framework is the concept of domain randomization, which involves training neural networks on a vastly diverse array of synthetically generated images with random contrast properties.
View Article and Find Full Text PDFNeuroinformatics
January 2025
Department of Clinical Medicine, UiT the Arctic University of Norway, Tromsø, Norway.
Intracranial atherosclerotic stenosis (ICAS) and intracranial aneurysms are prevalent conditions in the cerebrovascular system. ICAS causes a narrowing of the arterial lumen, thereby restricting blood flow, while aneurysms involve the ballooning of blood vessels. Both conditions can lead to severe outcomes, such as stroke or vessel rupture, which can be fatal.
View Article and Find Full Text PDFNat Biomed Eng
January 2025
Developing Brain Computing Lab, Department of Radiology and Biomedical Research Imaging Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, USA.
In magnetic resonance imaging of the brain, an imaging-preprocessing step removes the skull and other non-brain tissue from the images. But methods for such a skull-stripping process often struggle with large data heterogeneity across medical sites and with dynamic changes in tissue contrast across lifespans. Here we report a skull-stripping model for magnetic resonance images that generalizes across lifespans by leveraging personalized priors from brain atlases.
View Article and Find Full Text PDFArXiv
December 2024
Department of Computer Science, University of Copenhagen, Copenhagen, Denmark.
Purpose: Reliable image quality assessment is crucial for evaluating new motion correction methods for magnetic resonance imaging. In this work, we compare the performance of commonly used reference-based and reference-free image quality metrics on a unique dataset with real motion artifacts. We further analyze the image quality metrics' robustness to typical pre-processing techniques.
View Article and Find Full Text PDFNeurooncol Adv
December 2024
Department of Neurosurgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, Pennsylvania, USA.
Background: Fully automatic skull-stripping and tumor segmentation are crucial for monitoring pediatric brain tumors (PBT). Current methods, however, often lack generalizability, particularly for rare tumors in the sellar/suprasellar regions and when applied to real-world clinical data in limited data scenarios. To address these challenges, we propose AI-driven techniques for skull-stripping and tumor segmentation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!