Introduction: Lower body negative pressure (LBNP) is routinely used to induce central hypovolemia. LBNP leads to a shift in blood to the lower extremities. While the effects of LBNP on physiological responses and large arteries have been widely reported, there is almost no literature regarding how these cephalad fluid shifts affect the microvasculature. The present study evaluated the changes in retinal microcirculation parameters induced by LBNP in both males and females.
Methodology: Forty-four participants were recruited for the present study. The retinal measurements were performed at six time points during the LBNP protocol. To prevent the development of cardiovascular collapse (syncope) in the healthy participants, graded LBNP until a maximum of -40 mmHg was applied. A non-mydriatic, hand-held Optomed Aurora retinal camera was used to capture the retinal images. MONA Reva software (version 2.1.1) was used to analyze the central retinal arterial and venous diameter changes during the LBNP application. Repeated measures ANOVAs, including sex as the between-subjects factor and the grade of the LBNP as the within-subjects factor, were performed.
Results: No significant changes in retinal microcirculation were observed between the evaluated time points or across the sexes.
Conclusions: Graded LBNP application did not lead to changes in the retinal microvasculature across the sexes. The present study is the first in the given area that attempted to capture the changes in retinal microcirculation caused by central hypovolemia during LBNP. However, further research is needed with higher LBNP levels, including those that can induce pre-fainting (presyncope), to fully understand how retinal microcirculation adapts during complete cardiovascular collapse (e.g., during hypovolemic shock) and/or during severe hemorrhage.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10525942 | PMC |
http://dx.doi.org/10.3390/biology12091224 | DOI Listing |
J Clin Med
January 2025
Gravitational Physiology and Medicine Research Unit, Division of Physiology & Pathophysiology, Medical University of Graz, 8010 Graz, Austria.
Cardiovascular diseases are a leading cause of death, and psychosocial stress is considered a contributing factor to these issues. With the rising number of heart surgeries, proper rehabilitation post-surgery is essential. Previous studies have demonstrated the positive impact of yoga and transcendental meditation on the cardiovascular system.
View Article and Find Full Text PDFDiabetes Obes Metab
January 2025
Department of Genetics, College of Basic Medical Sciences, Jilin University, Changchun, China.
Aims: This study aimed to discover the regulatory mechanisms contributing to angiogenesis in nonproliferative diabetic retinopathy (NPDR).
Materials And Methods: This study employed a case-control design involving type 2 diabetes patients with and without NPDR. We utilised microRNA sequencing to analyse plasma and retina samples from T2D patients, to identify both existing and novel microRNAs relevant to retinal health.
Sci Rep
January 2025
Department of Ophthalmology, Taichung Veterans General Hospital, No.1650, Sec. 4, Taiwan Blvd., Xitun Dist., Taichung, Taiwan.
Diabetic retinopathy (DR) is a leading cause of vision loss among adults. This study evaluates Optical Coherence Tomography Angiography (OCTA) vessel density (VD) as a marker for DR in diabetes mellitus (DM) patients. An observational study was conducted with 47 type 2 DM patients and 21 healthy controls.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Dipartimento di Biotecnologie e Scienze della Vita, ASST Sette Laghi, Università degli Studi dell'Insubria, 21100 Varese, Italy.
Hypertension exerts a profound impact on the microcirculation, causing both structural and functional alterations that contribute to systemic and organ-specific vascular damage. The microcirculation, comprising arterioles, capillaries, and venules with diameters smaller than 20 μm, plays a fundamental role in oxygen delivery, nutrient exchange, and maintaining tissue homeostasis. In the context of hypertension, microvascular remodeling and rarefaction result in reduced vessel density and elasticity, increasing vascular resistance and driving end-organ damage.
View Article and Find Full Text PDFLife (Basel)
December 2024
Clinical Physiology Unit, Medical Simulation Centre, Medical University of Gdańsk, 80-210 Gdańsk, Poland.
This study aimed to analyze the relationship between cutaneous microcirculation reactivity, retinal circulation, macrocirculation function, and specific adhesion molecules in young patients with uncomplicated type 1 diabetes. Fifty-five patients with type 1 diabetes mellitus (T1DM), aged 8 to 18 years, were divided into subgroups based on skin microcirculation reactivity. The cutaneous microcirculatory vessels were considered reactive if post-test PORH coverage increased compared to pre-test coverage.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!