The NLRP3 inflammasome, estrogen and antimicrobial peptides have all been found to have a vital role in the protection of the bladder urothelium. However, the interdependence between these protective factors during a bladder infection is currently unknown. Our aim was to investigate the role of NLRP3 in the regulation of antimicrobial peptides and estrogen signaling in bladder epithelial cells during a UPEC infection. Human bladder epithelial cells and CRISPR/Cas9-generated NLRP3-deficient cells were stimulated with the UPEC strain CFT073 and estradiol. The gene and protein expression were evaluated with microarray, qRT-PCR, western blot and ELISA. Microarray results showed that the expression of most antimicrobial peptides was reduced in CFT073-infected NLRP3-deficient cells compared to Cas9 control cells. Conditioned medium from NLRP3-deficient cells also lost the ability to suppress CFT073 growth. Moreover, NLRP3-deficient cells had lower basal release of Beta-defensin-1, Beta-defensin-2 and RNase7. The ability of estradiol to induce an increased expression of antimicrobial peptides was also abrogated in NLRP3-deficient cells. The decreased antimicrobial peptide expression might be linked to the observed reduced expression and activity of estradiol receptor beta in NLRP3-deficient cells. This study suggests that NLRP3 may regulate the release and expression of antimicrobial peptides and affect estrogen signaling in bladder epithelial cells.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526908 | PMC |
http://dx.doi.org/10.3390/cells12182298 | DOI Listing |
PeerJ
December 2024
Department of Microbiology and Parasitology, Faculty of Medical Science, Naresuan University, Muang, Phitsanulok, Thailand.
Background: poses a significant public health threat. Phage-encoded antimicrobial peptides (AMPs) have emerged as promising candidates in the battle against antibiotic-resistant .
Methods: Antimicrobial peptides from the endolysin of bacteriophage were designed from bacteriophage vB_AbaM_PhT2 and vB_AbaAut_ChT04.
Fish Shellfish Immunol
December 2024
School of Aquatic and Life Sciences, Shanghai Ocean University, Shanghai, China. Electronic address:
Mucosa-associated lymphoid tissue lymphoma translocation protein 1 (MALT1), a scaffold protein, plays a pivotal role in the NF-κB pathway downstream of T-cell receptors (TCRs) and B-cell receptors (BCRs). As a key signaling hub, MALT1 integrates various pathways, making it essential for both innate and adaptive immunity. However, its role in the antibacterial immune responses of crustaceans remains unclear.
View Article and Find Full Text PDFPlant Foods Hum Nutr
December 2024
Facultad de Ingeniería Química, Universidad Autónoma de Yucatán, Periférico Norte Km. 33.5, Tablaje Catastral 13615, Col. Chuburná de Hidalgo Inn, Mérida, 97203, Yucatán, México.
The increasing concern over microbial resistance to conventional antimicrobial agents used in food preservation has led to growing interest in plant-derived antimicrobial peptides (AMPs) as alternative solutions. In this study, the antimicrobial mechanisms of chia seed-derived peptides YACLKVK, KLKKNL, KLLKKYL, and KKLLKI were investigated against Staphylococcus aureus (SA) and Escherichia coli (EC). Fluorometric assays and scanning electron microscopy (SEM) demonstrated that the peptides disrupt bacterial membranes, with propidium iodide (PI) uptake reaching 72.
View Article and Find Full Text PDFTrends Biochem Sci
December 2024
IPSiM, CNRS, INRAE, Institut Agro, Univ. Montpellier, 2, Place P. Viala, F-34 060 Cedex 2 Montpellier, France. Electronic address:
Molecular de-extinction is an innovative science aiming to discover, synthesize, and characterize molecules throughout evolution. Recent work by Ferreira et al. involved mining ancient genomes to search for antimicrobial defensins.
View Article and Find Full Text PDFFood Chem
December 2024
Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi 830017, China. Electronic address:
This study developed antimicrobial peptides (AMPs) from quinoa with high antibacterial activity and stability by mixed-bacteria fermentation. Furthermore, among 9 peptide fractions purified by membrane separation and chromatography, F1 could effectively inhibit the growth and propagation of bacterial microorganisms in apple juice. Subsequently, F1 identified LC-MS/MS as 95 peptides, molecular weights 494.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!