Emerging evidence indicates that intracellular calcium (Ca) levels and their regulatory proteins play essential roles in normal stem cell proliferation and differentiation. Cancer stem-like cells (CSCs) are subpopulations of cancer cells that retain characteristics similar to stem cells and play an essential role in cancer progression. Recent studies have reported that the Orai3 calcium channel plays an oncogenic role in human cancer. However, its role in CSCs remains underexplored. In this study, we explored the effects of Orai3 in the progression and stemness of oral/oropharyngeal squamous cell carcinoma (OSCC). During the course of OSCC progression, the expression of Orai3 exhibited a stepwise augmentation. Notably, Orai3 was highly enriched in CSC populations of OSCC. Ectopic Orai3 expression in non-tumorigenic immortalized oral epithelial cells increased the intracellular Ca levels, acquiring malignant growth and CSC properties. Conversely, silencing of the endogenous Orai3 in OSCC cells suppressed the CSC phenotype, indicating a pivotal role of Orai3 in CSC regulation. Moreover, Orai3 markedly increased the expression of inhibitor of DNA binding 1 (ID1), a stemness transcription factor. Orai3 and ID1 exhibited elevated expression within CSCs compared to their non-CSC counterparts, implying the functional importance of the Orai3/ID1 axis in CSC regulation. Furthermore, suppression of ID1 abrogated the CSC phenotype in the cell with ectopic Orai3 overexpression and OSCC. Our study reveals that Orai3 is a novel functional CSC regulator in OSCC and further suggests that Orai3 plays an oncogenic role in OSCC by promoting cancer stemness via ID1 upregulation.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10527097PMC
http://dx.doi.org/10.3390/cells12182225DOI Listing

Publication Analysis

Top Keywords

orai3
13
orai3 calcium
8
calcium channel
8
cancer stemness
8
play essential
8
plays oncogenic
8
oncogenic role
8
ectopic orai3
8
csc phenotype
8
csc regulation
8

Similar Publications

Genetic evidence against involvement of TRPC proteins in SOCE, ROCE, and CRAC channel function.

Proc Natl Acad Sci U S A

December 2024

Institute of Biomedical Research, School of Biomedical Sciences, Catholic University of Argentina, Buenos Aires C1107AFF, Argentina.

Article Synopsis
  • Researchers used genetically engineered mice and cell lines to study how the depletion of endoplasmic reticulum (ER) calcium stores activates specific calcium entry channels (SOCE) that primarily rely on Orai1 molecules.
  • They discovered that Orai1 is the dominant calcium entry pathway compared to Orai2 and Orai3, and this process does not require functional TRPC molecules, as shown by experiments using cells with inactive TRPC genes.
  • The study also found that even though the TRPC genes were disrupted, both store-depletion-activated calcium entry and receptor-operated calcium entry (ROCE) still relied on Orai1, leading to the establishment of a new strain of mice called TRPC heptaKO mice, which are
View Article and Find Full Text PDF

Ca is an important regulator of endoplasmic reticulum (ER) and mitochondrial function. Store-operated calcium entry (SOCE) serves as the predominant pathway for the influx of extracellular Ca into the cell. ORAI1, ORAI2, and ORAI3 are the main proteins of SOCE.

View Article and Find Full Text PDF

Renal cell carcinoma (RCC) presents significant clinical challenges, highlighting the importance of understanding its molecular mechanisms. While store-operated Ca entry (SOCE) is known to play an essential role in tumorigenesis and metastasis, its specific implications across various RCC subtypes remain underexplored. This study analyzed SOCE-related mRNA profiles from the KIRC and KIRP projects in The Cancer Genome Atlas (TCGA) database, focusing on differential gene expression and overall survival outcomes.

View Article and Find Full Text PDF

ELD607 specifically traffics Orai1 to the lysosome leading to inhibition of store operated calcium entry.

Cell Calcium

November 2024

Division of Genetic, Environmental and Inhalational Disease, Department of Internal Medicine, Kansas University Medical Center, Kansas City, KS 66103, USA. Electronic address:

Orai1 is a plasma membrane Ca channel involved in store operated calcium entry (SOCE). SOCE can regulate cell growth, exocytosis, gene expression and inflammation. We previously found that short palate lung and nasal epithelial clone 1's (SPLUNC1) sixth α-helix (α6) bound Orai1 to inhibit SOCE.

View Article and Find Full Text PDF
Article Synopsis
  • Breast cancer stem cells (BCSCs) contribute to the challenges in breast tumor therapy by promoting cancer progression, recurrence, and resistance to treatment, yet their relationship with calcium (Ca) signaling is not well understood.
  • Researchers used a 3D soft fibrin gel to harvest BCSC-like cells from breast cancer lines and studied the impact of two Ca-permeable ion channels, Orai1 and Orai3, on these cells.
  • The study revealed that Orai1 and its interaction with SPCA2 promote BCSC growth through a glycolysis pathway, while Orai3 influences growth via a different, glycolysis-independent mechanism, highlighting the complexity of Ca signaling in BCSCs.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!