Model Organisms to Study Autophagy.

Cells

Center for Biochemistry, Medical Faculty, University of Cologne, Joseph-Stelzmann-Str. 52, 50931 Cologne, Germany.

Published: September 2023

Autophagy is the major lysosomal pathway for the clearance of proteins, organelles and microbes in eukaryotic cells. Therefore, autophagic dysfunction can lead to numerous human diseases, like cancer or neurodegeneration, and may facilitate infections by pathogens. However, despite tremendous advances in the understanding of autophagy over the past decades, the functions and regulations of autophagy-related proteins in canonical and non-canonical autophagy are still not fully resolved. The Special Issue "Model Organisms to Study Autophagy" organized by includes six original articles and one review that show the latest achievements in autophagy research using different model organisms. The Special Issue summarizes and discusses different aspects of autophagy that open new avenues in understanding autophagy functions and mechanisms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10526943PMC
http://dx.doi.org/10.3390/cells12182212DOI Listing

Publication Analysis

Top Keywords

model organisms
8
organisms study
8
understanding autophagy
8
special issue
8
autophagy
7
study autophagy
4
autophagy autophagy
4
autophagy major
4
major lysosomal
4
lysosomal pathway
4

Similar Publications

This study investigated the predictive value of combining peripheral blood indicators with procalcitonin clearance rate (PCTc) to assess mortality risk in cancer patients with sepsis, aiming to develop a more sensitive and specific clinical tool. A retrospective analysis was conducted on 393 cancer patients with sepsis admitted to South China Hospital of Shenzhen University from January 2019 to January 2024. Collected data included clinical demographics, laboratory indicators such as white blood cell count, neutrophil count (NEUT), platelet count (PLT), lymphocyte count (LYC), C-reactive protein, procalcitonin (PCT), alanine aminotransferase, and the ratio of arterial oxygen partial pressure to inspired oxygen fraction, as well as functional scores like Acute Physiology and Chronic Health Evaluation II (APACHE II) and Sequential Organ Failure Assessment.

View Article and Find Full Text PDF

Injured epithelial organs must rapidly replace damaged cells to restore barrier integrity and physiological function. In response, injury-born stem cell progeny differentiate faster compared to healthy-born counterparts, yet the mechanisms that pace differentia-tion are unclear. Using the adult Drosophila intestine, we find that injury speeds cell differentiation by altering the lateral inhibition circuit that transduces a fate-determin-ing Notch signal.

View Article and Find Full Text PDF

Crystallin proteins serve as both essential structural and as well as protective components of the ocular lens and are required for the transparency and light refraction properties of the organ. The mouse lens crystallin proteome is represented by αA-, αB-, βA1-, βA2-, βA3-, βA4-, βB1-, βB2-, βB3-, γA-, γB-, γC-, γD-, γE, γF-, γN-, and γS-crystallin proteins encoded by 16 genes. Their mutations are responsible for lens opacification and early onset cataract formation.

View Article and Find Full Text PDF

The recalcitrance of to antibiotic treatment has been broadly attributed to the impermeability of the organism's outer mycomembrane. However, the studies that support this inference have been indirect and/or reliant on bulk population measurements. We previously developed the P eptidoglycan A ccessibility C lick- M ediated A ssessme N t (PAC-MAN) method to covalently trap azide-modified small molecules in the peptidoglycan cell wall of live mycobacteria, after they have traversed the mycomembrane.

View Article and Find Full Text PDF

Animals capable of complex behaviors tend to have more distinct brain areas than simpler organisms, and artificial networks that perform many tasks tend to self-organize into modules (1-3). This suggests that different brain areas serve distinct functions supporting complex behavior. However, a common observation is that essentially anything that an animal senses, knows, or does can be decoded from neural activity in any brain area (4-6).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!