Background: Glioblastoma multiforme (GBM) is one of the most common primary malignant brain tumors. Yi Qi Qu Yu Jie Du Fang (YYQQJDF) is a traditional Chinese medicine (TCM) prescription for GBM. The present study aimed to use a network pharmacology method to analyze the underlying mechanism of YQQYJDF in treating GBM.
Methods: GBM sample data, active ingredients and potential targets of YQQYJDF were obtained from databases. R language was used to screen differentially expressed genes (DEGs) between GBM tissues and normal tissues, and to perform enrichment analysis and weighted gene coexpression network analysis (WGCNA). The Search Tool for the Retrieval of Interacting Genes/Proteins (STRING) database was used to perform a protein‒protein interaction (PPI) analysis. A Venn diagram was used to obtain the core target genes of YQQYJDF for GBM treatment. Molecular docking was used to verify the binding between the active ingredient molecules and the proteins corresponding to the core target genes. Cell proliferation assays and invasion assays were used to verify the effect of active ingredients on the proliferation and invasion of glioma cells.
Results: A total of 73 potential targets of YQQYJDF in the treatment of GBM were obtained. Enrichment analyses showed that the biological processes and molecular functions involved in these target genes were related to the activation of the G protein-coupled receptor (GPCR) signaling pathway and the regulation of hypoxia. The neuroactive ligand‒receptor pathway, the cellular senescence pathway, the calcium signaling pathway, the cell cycle pathway and the p53 signaling pathway might play important roles. Combining the results of WGCNA and PPI analysis, five core target genes and their corresponding four core active ingredients were screened. Molecular docking indicated that the core active ingredient molecules and the proteins corresponding to the core target genes had strong binding affinities. Cell proliferation and invasion assays showed that the core active ingredients of YQQYJDF significantly inhibited the proliferation and invasion of glioma cells (P < 0.01).
Conclusions: The present study predicted the possible active ingredients and targets of YQQYJDF in treating GBM, and analyzed its possible mechanism. These results may provide a basis and ideas for further research.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10523639 | PMC |
http://dx.doi.org/10.1186/s12906-023-04174-7 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!