The difference of intestinal microbiota composition between Lantang and Landrace newborn piglets.

BMC Vet Res

College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China.

Published: September 2023

Background: The early development of intestinal microbiota plays a fundamental role in host health and development. To investigate the difference in the intestinal microbial composition between Lantang and Landrace newborn piglets, we amplified and sequenced the V3-V4 region of 16 S rRNA gene in jejunal microbiota of Lantang and landrace newborn.

Results: The findings revealed that the dominant phyla in the jejunum of Lantang piglets were Firmicutes, Actinobacteria and Bacteroidetes, while the dominant phyla of Landrace is Proteobacteria and Fusobacteria. Specifically, Corynebacterium_1, Lactobacillus, Rothia, Granulicatella, Corynebacteriales_unclassified, Corynebacterium, Globicatella and Actinomycetales_unclassified were found to be the dominant genera of Lantang group, while Clostridium_sensu_stricto_1, Escherichia-Shigella, Actinobacillus and Bifidobacterium were the dominant genera of Landrace. Based on the functional prediction of bacteria, we found that bacterial communities from Lantang samples had a significantly greater abundance pathways of fatty acid synthesis, protein synthesis, DNA replication, recombination, repair and material transport across membranes, while the carrier protein of pathogenic bacteria was more abundant in Landrace samples.

Conclusions: Overall, there was a tremendous difference in the early intestinal flora composition between Landang and Landrace piglets, which was related to the breed characteristics and may be one of the reasons affecting the growth characteristics. However, more further extensive studies should be included to reveal the underlying relationship between early intestinal flora composition in different breeds and pig growth characteristics.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10523759PMC
http://dx.doi.org/10.1186/s12917-023-03642-zDOI Listing

Publication Analysis

Top Keywords

lantang landrace
12
difference intestinal
8
intestinal microbiota
8
composition lantang
8
landrace newborn
8
newborn piglets
8
dominant phyla
8
dominant genera
8
early intestinal
8
intestinal flora
8

Similar Publications

Currently, there are plenty of histochemical methods to classify pig muscle fibers, which confused the naming and classification of muscle fibers. This study aims to analyze the difference and correlation of 6 different histochemical methods and select the most suitable method for muscle fiber classification at the molecular and histomological levels by in-situ RT-PCR and enzyme histochemical methods. Muscle fiber samples, including psoas (PM), semitendinosus (SM) and trapezius muscle (TM), were collected from Large Spotted (LS), Lantang (LT) and Landrace (LR) pigs at their market-ages (LS at 150 d, LT at 210 d, and LR at 150 d).

View Article and Find Full Text PDF

Integrated meta-omics reveals the regulatory landscape involved in lipid metabolism between pig breeds.

Microbiome

February 2024

Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong, 510642, China.

Background: Domesticated pigs serve as an ideal animal model for biomedical research and also provide the majority of meat for human consumption in China. Porcine intramuscular fat content associates with human health and diseases and is essential in pork quality. The molecular mechanisms controlling lipid metabolism and intramuscular fat accretion across tissues in pigs, and how these changes in response to pig breeds, remain largely unknown.

View Article and Find Full Text PDF

A novel protein encoded by circKANSL1L regulates skeletal myogenesis via the Akt-FoxO3 signaling axis.

Int J Biol Macromol

February 2024

Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, State Key Laboratory of Swine and Poultry Breeding Industry, College of Animal Science, South China Agricultural University, Guangzhou, Guangdong 510642, China. Electronic address:

Skeletal muscle is one the largest organs of the body and is involved in animal production and human health. Circular RNAs (circRNAs) have been implicated in skeletal myogenesis through largely unknown mechanisms. Herein, we report the phenotypic and metabolomic analysis of porcine longissimus dorsi muscles in Lantang and Landrace piglets, revealing a high-content of slow-oxidative fibers responsible for high-quality meat product in Lantang piglets.

View Article and Find Full Text PDF

The difference of intestinal microbiota composition between Lantang and Landrace newborn piglets.

BMC Vet Res

September 2023

College of Animal Science, Guangdong Provincial Key Laboratory of Animal Nutrition Control, National Engineering Research Center for Breeding Swine Industry, South China Agricultural University, Guangzhou, Guangdong, 510642, China.

Background: The early development of intestinal microbiota plays a fundamental role in host health and development. To investigate the difference in the intestinal microbial composition between Lantang and Landrace newborn piglets, we amplified and sequenced the V3-V4 region of 16 S rRNA gene in jejunal microbiota of Lantang and landrace newborn.

Results: The findings revealed that the dominant phyla in the jejunum of Lantang piglets were Firmicutes, Actinobacteria and Bacteroidetes, while the dominant phyla of Landrace is Proteobacteria and Fusobacteria.

View Article and Find Full Text PDF

Notch signaling leads to a slower progression of embryonic myogenic differentiation in Landrace than in Langtang pigs.

Acta Biochim Biophys Sin (Shanghai)

August 2022

State Key Laboratory of Biocontrol, School of Life Sciences, Sun Yat-Sen University, Guangzhou 510006, China.

Delving into porcine embryonic myogenesis is the key to elucidate the complex regulation of breed-specific differences in growth performance and meat production. Increasing evidence proves that pigs with less meat production show earlier embryonic myogenesis, but little is known about the underlying mechanisms. In this study, we examine the longissimus dorsi muscle (LDM) by immunohistochemistry and confirm that the differentiation of myogenic progenitors is increased ( <0.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!