Formation of continental crust has shaped the surface and interior of our planet and generated the land and mineral resources on which we rely. However, how the early continental crust of Earth formed is still debated. Modern continental crust is largely formed from wet and oxidizing arc magmas at subduction zones, in which oceanic lithosphere and water recycle into the mantle. The magmatic HO content and redox state of ancient rocks that constitute the early continental crust, however, are difficult to quantify owing to ubiquitous metamorphism. Here we combine two zircon oxybarometers to simultaneously determine magmatic oxygen fugacity (fO) and HO content of Archaean (4.0-2.5 billion years ago) granitoids that dominate the early continental crust. We show that most Archaean granitoid magmas were ≥1 log unit more oxidizing than Archaean ambient mantle-derived magmas and had high magmatic HO contents (6-10 wt%) and high HO/Ce ratios (>1,000), similar to modern arc magmas. We find that magmatic fO, HO contents and HO/Ce ratios of Archaean granitoids positively correlate with depth of magma formation, requiring transport of large amounts of HO to the lower crust and mantle. These observations can be readily explained by subduction but are difficult to reconcile with non-subduction models of crustal formation. We note an increase in magmatic fO and HO content between 4.0 and 3.6 billion years ago, probably indicating the onset of subduction during this period.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1038/s41586-023-06552-0 | DOI Listing |
Environ Geochem Health
January 2025
Department of Agricultural Chemistry, National Taiwan University, Taipei, 10617, Taiwan.
Rare earth elements (REEs) are a critical global focus due to their increasing use, raising concerns about their environmental distribution and human exposure, both vital to food safety and human health. Surface soil (0-30 cm) and corresponding rice grain samples (n = 85) were collected from paddy fields in Taiwan. This study investigated the total REE contents in soil through aqua regia digestion, as well as their labile forms extracted using 0.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
State Key Laboratory of Continental Dynamics, Department of Geology, Northwest University, Xi'an 710069, China.
Subducted plates often stagnate in the mantle transition zone (MTZ), and the fate of the stagnant slabs is still debatable. They may sink into the lower mantle, or remain partially trapped in the MTZ, but it is uncertain whether they can return to the upper mantle. We report geochemical evidence of late-Miocene (~6 Ma) basalts from, and upper mantle seismic evidence beneath Shuangyashan, an area above the slab tear of the stagnant Pacific plate in eastern Asia, to show how the slab returns to the upper mantle from the MTZ.
View Article and Find Full Text PDFNature
January 2025
School of Natural Sciences, Macquarie University, North Ryde, New South Wales, Australia.
The cratonic crust contains abundant mineral deposits of metals such as gold, copper and rare earths and is underlain by a thick mantle lithosphere rich in the volatiles carbon, sulfur and water. Although volatiles are known to be key components in metallogenesis, how and where they are distributed in the cratonic lithosphere mantle and their role in the initial enrichment of metals have not been sufficiently explored. Here we compile sulfur and copper contents of global cratonic peridotites, identifying sulfide-rich and copper-rich continental roots at depths of 160-190 km at cratonic margins.
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
January 2025
Faculty of Geography, Lomonosov Moscow State University, 119991, Moscow, Russia.
The content of 39 metals and metalloids (MMs) in submicron road dust (PM fraction) was studied in the traffic zone, residential courtyards with parking lots, and on pedestrian roads in parks in Moscow. The geochemical profiles of PM vary slightly between different types of roads and courtyards but differ significantly from those in parks. In Moscow, compared to other cities worldwide, submicron road dust contains less As, Sb, Mo, Cr, Cd, Sn, Tl, Ca, Rb, La, Y, U, but more Cu, Zn, Co, Fe, Mn, Ti, Zr, Al, V.
View Article and Find Full Text PDFJ Hazard Mater
December 2024
Department of Pharmacology and Toxicology, College of Pharmacy, King Saud University, P.O. Box 55760, Riyadh 11451, Saudi Arabia.
Human activities have far-reaching impact on natural ecosystems, causing increasing disturbances and disruptions to the delicate balance of the environment. Poor land use planning, urbanization, infrastructure development, and unplanned tourism exacerbate contamination and degradation in tourist destinations, yet the pollution of potentially toxic elements (PTEs) in these environments remains inadequately explored. To address this issue, we investigated the concentrations of acid-digested PTEs in road dust in Abbottabad city (Pakistan) with heavy traffic.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!