The success of many drugs in ophthalmic treatments is hindered by their physico-chemical properties and the limited precorneal retention time. Here, lyotropic liquid crystals are proposed as a new ophthalmic drug delivery system. Acyclovir was chosen as model drug for its solubility and its controlled release from cubic phase was achieved. We demonstrated the effortless application of lamellar phase on corneal surface and its ability to convert itself in cubic phase in situ. While the complex viscosity of lamellar phase was affected by temperature (5.1 ± 1.4 kPa·s at 25 °C and 0.12 ± 0.001 Pa·s at 35 °C, respectively), the cubic phase shown no changes in viscosity values and shear thinning behaviour at both temperatures and even in presence of the drug The degradation kinetic of drug-loaded cubic phase was slightly slower than the empty formulation, recording 27.92 ± 1.43% and 33.30 ± 3.11% of weight loss after 8 h. Ex vivo studies conducted on porcine eyeballs and isolated cornea confirmed the instantaneous transition to cubic phase, its ability to resist to gravity force, and forced dripping of simulated tear fluid. Histopathological investigation showed how treated cornea did not report changes in epithelial and stroma structures. In summary, lyotropic liquid crystals could represent an advantageous ophthalmic drug delivery system.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533901 | PMC |
http://dx.doi.org/10.1038/s41598-023-42185-z | DOI Listing |
Sci Rep
January 2025
Center for Advanced Materials and Structures, School of Science and Technology, The University of Georgia, 0171, Tbilisi, Georgia.
In this work, cerium dioxide nanostructures were synthesized in an easy sonochemical way. CeO nanoparticles have received much attention in nanotechnology. CeONPs, exhibit biomimetic properties depending on their size, ratio of valency on their surface, and the ambient physico-chemical properties.
View Article and Find Full Text PDFACS Nano
January 2025
Faculty III Process Sciences, Institute of Materials Science and Technology, Chair of Advanced Ceramic Materials, Technische Universität Berlin, Straße des 17. Juni 135, 10623 Berlin, Germany.
Metastable, , kinetically favored but thermodynamically not stable, interstitial solid solutions of carbon in iron are well-understood. Carbon can occupy the interstitial atoms of the host metal, altering its properties. Alloying of the host metal results in the stabilization of the FeC phases, widening its application.
View Article and Find Full Text PDFJ Phys Condens Matter
January 2025
Physics, Indian Institute of Technology Banaras Hindu University, Indian Institute of Technology (Banaras Hindu University), Department of Physics, Varanasi, Varanasi, Uttar Pradesh, 221005, INDIA.
In the present work, we reinvestigate the atomic ordering of a Pb-free Morphotropic Phase Boundary (MPB) composition viz., K0.5Na0.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University Taiyuan 030006 China
CO conversion and reuse technology are crucial for alleviating environmental stress and promoting carbon cycling. Reverse water gas shift (RWGS) reaction can transform inert CO into active CO. Molybdenum carbide (MoC) has shown good performance in the RWGS reaction, and different crystalline phases exhibit distinct catalytic behaviors.
View Article and Find Full Text PDFACS Omega
December 2024
Advanced Materials Research Group, Faculty of Engineering, University of Nottingham, Nottingham NG7 2RD, U.K.
This study presents the development and characterization of high yttrium-content phosphate-based glass-ceramic microspheres for potential applications in bone cancer radiotherapy treatment. The microspheres produced via flame spheroidization, followed by sieving, revealed a lack of aggregation and a narrow size distribution (45-125 μm) achieved across different yttrium oxide to glass ratio samples. Energy dispersive X-ray (EDX) analysis showed a significant increase in yttrium content within the microspheres with increasing yttrium oxide to glass ratio samples, ranging from approximately 1-39 mol % for 10Y-50Y microspheres, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!