Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This paper proposes a adaptive reaching law-based sliding mode control (SMC) method for maintaining favorable velocity control performance of permanent magnet synchronous motors (PMSMs) under internal and external perturbations. An adaptive switching power reaching law (ASPRL) is designed, which contains adaptive terms and state variables of the sliding mode surface function. This augmented reaching law decreases the chatter of the control system and increases the rate at which the state variables of the system reach the sliding mode surface. Additionally, a Luenberger observer load torque (LOLT) is designed to observe the external load and provide feedback to the velocity controller, reducing the impact of load disturbances and improving the jamming performance of the controller. Simulation experiments confirm that ASPRL reduces buffeting, decreases overshoot, and shortens response time, demonstrating its advantages in PMSM control.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10533496 | PMC |
http://dx.doi.org/10.1038/s41598-023-43304-6 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!